Nouvelles perspectives concernant la structure et la fonction du domaine carboxyl terminal de Hfq
Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent β-sheets within individual protomers to…
Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro
Post-transcriptional control of gene expression by small regulatory noncoding RNA (sRNA) needs protein accomplices to occur. Past research mainly focused on the RNA chaperone Hfq as cofactor. Nevertheless, recent studies indicated that other proteins might be involved in sRNA-based regulations. As some of these proteins have been shown to self-assemble, we describe in this chapter protocols to analyze the nano-assemblies formed. Precisely, we focus our analysis on Escherichia coli Hfq as a model, but the protocols presented here can be applied to analyze any polymer of proteins. This chapter thus provides a guideline to develop commonly used approaches to detect prokaryotic protein self-ass…