0000000000705725

AUTHOR

Hans Fangohr

showing 3 related works from this author

Electric field driven domain wall transfer in hybrid structures

2012

Domain wall (DW) motion devices attracts much interest with their prospective logic and memory applications[1][2]. Present on-chip DW manipulations by a magnetic field of electric currents or electron spin torque raise the problem of high Ohmic energy losses. We show that such a difficulty can be avoided by applying an exchange field H eff to the magnetic layer from the proximate graphene (Gr), instead of using an actual magnetic field. H eff is shown to be dependent on carrier density gradient in Gr, which is easily manipulated with a gate voltage. A novel memory device implementing this concept is designed and modeled, demonstrating switching power well below femto-Joule while maintaining…

PhysicsDomain wall (magnetism)FerromagnetismCondensed matter physicsField (physics)business.industryLogic gateElectric fieldElectrical engineeringElectronElectric currentbusinessMagnetic field70th Device Research Conference
researchProduct

Coarse-graining collective skyrmion dynamics in confined geometries

2023

Magnetic skyrmions are magnetic quasi-particles with enhanced stability and different manipulation mechanisms using external fields and currents making them promising candidates for future applications for instance in neuromorphic computing. Recently, several measurements and simulations have shown that thermally activated skyrmions in confined geometries, as they are necessary for device applications, arrange themselves predominantly based on commensurability effects. In this simulational study, based on the Thiele model, we investigate the enhanced dynamics and degenerate non-equilibrium steady state of a system in which the intrinsic skyrmion-skyrmion and skyrmion-boundary interaction co…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences
researchProduct

Machine learning-based spin structure detection

2023

One of the most important magnetic spin structure is the topologically stabilised skyrmion quasi-particle. Its interesting physical properties make them candidates for memory and efficient neuromorphic computation schemes. For the device operation, detection of the position, shape, and size of skyrmions is required and magnetic imaging is typically employed. A frequently used technique is magneto-optical Kerr microscopy where depending on the samples material composition, temperature, material growing procedures, etc., the measurements suffer from noise, low-contrast, intensity gradients, or other optical artifacts. Conventional image analysis packages require manual treatment, and a more a…

FOS: Computer and information sciencesComputer Science - Machine LearningEmerging Technologies (cs.ET)Physics - Data Analysis Statistics and ProbabilityComputer Science - Emerging TechnologiesFOS: Physical sciencesData Analysis Statistics and Probability (physics.data-an)Machine Learning (cs.LG)
researchProduct