0000000000707405
AUTHOR
J. Grames
New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei
We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.
The Large Hadron–Electron Collider at the HL-LHC
The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LH…
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasielastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scatt…
Precision electron beam polarimetry for next generation nuclear physics experiments
Polarized electron beams have played an important role in scattering experiments at moderate to high beam energies. Historically, these experiments have been primarily targeted at studying hadronic structure — from the quark contribution to the spin structure of protons and neutrons, to nucleon elastic form factors, as well as contributions to these elastic form factors from (strange) sea quarks. Other experiments have aimed to place constraints on new physics beyond the Standard Model. For most experiments, knowledge of the magnitude of the electron beam polarization has not been a limiting systematic uncertainty, with only moderately precise beam polarimetry requirements. However, a new …