0000000000708245

AUTHOR

Leonid L. Rusevich

showing 12 related works from this author

Rigid versus Flexible Protein Matrix: Light-Harvesting Complex II Exhibits a Temperature-Dependent Phonon Spectral Density

2018

Dynamics-function correlations are usually inferred when molecular mobility and protein function are simultaneously impaired at characteristic temperatures or hydration levels. In this sense, excitation energy transfer in the photosynthetic light-harvesting complex II (LHC II) is an untypical example because it remains fully functional even at cryogenic temperatures relying mainly on interactions of electronic states with protein vibrations. Here, we study the vibrational and conformational protein dynamics of monomeric and trimeric LHC II from spinach using inelastic neutron scattering (INS) in the temperature range of 20-305 K. INS spectra of trimeric LHC II reveal a distinct vibrational …

Chlorophyll0301 basic medicineMaterials sciencePhononLight-Harvesting Protein Complexes010402 general chemistry01 natural sciencesMolecular physicsInelastic neutron scatteringSpectral line03 medical and health sciencesSpinacia oleraceaMaterials ChemistryPhysics::Chemical PhysicsPhysical and Theoretical ChemistrySofteningQuantitative Biology::BiomoleculesProtein dynamicsAnharmonicityTemperaturefood and beveragesAtmospheric temperature rangeProtein Structure Tertiary0104 chemical sciencesSurfaces Coatings and FilmsNeutron Diffraction030104 developmental biologyEnergy TransferExcitationThe Journal of Physical Chemistry B
researchProduct

Ab initio simulation of (Ba,Sr)TiO3 and (Ba,Ca)TiO3 perovskite solid solutions

2019

Abstract The results of ab initio (first-principles) computations of structural, elastic and piezoelectric properties of Ba(1−x)SrxTiO3 (BSTO) and Ba(1−x)CaxTiO3 (BCTO) perovskite solid solutions are presented, discussed and compared. Calculations are performed with the CRYSTAL14 computer code within the linear combination of atomic orbitals (LCAO) approximation, using advanced hybrid functionals of the density-functional-theory (DFT). Supercell model allows us to simulate solid solutions with different chemical compositions (x = 0, 0.125 and 0.25) within ferroelectric tetragonal phases (x

Materials scienceAb initio02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsFerroelectricity0104 chemical sciencesHybrid functionalTetragonal crystal systemLinear combination of atomic orbitalsSupercell (crystal)General Materials Science0210 nano-technologyPerovskite (structure)Solid solutionSolid State Ionics
researchProduct

Theoretical and Experimental Study of (Ba,Sr)TiO 3 Perovskite Solid Solutions and BaTiO 3 /SrTiO 3 Heterostructures

2019

This study was supported by the ERA-NET HarvEnPiez project. The authors would like to thank their national funding agencies (Latvian State Education Development Agency, Slovenian Ministry of Higher Education, Science and Technology, Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 49/2016 within PNCDI III – M-ERA NET Program).

Materials science4. EducationAb initioThermodynamics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFerroelectricity0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHybrid functionalCondensed Matter::Materials ScienceTetragonal crystal systemGeneral EnergyLinear combination of atomic orbitals:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theoryPhysical and Theoretical Chemistry0210 nano-technologyPerovskite (structure)Solid solutionThe Journal of Physical Chemistry C
researchProduct

Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes

2019

The authors thank Marjeta Maˇcek Kržmanc for many useful discussions. The financial support of M-ERA.NET Project Har-vEnPiez (Innovative nano-materials and architectures for integrated piezoelectric energy harvesting applications) is gratefully acknowledged. D.Z. acknowledges the support of the postdoctoral research program at the University of Latvia (Project No. 1.1.1.2/VIAA/1/16/072). The computing time of the LASC cluster was provided by the Institute of Solid State Physics (ISSP).

Condensed Matter - Materials ScienceMaterials scienceSuperlatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFerroelectricity0104 chemical sciencesDipoleNanocrystalFerromagnetismChemical physics:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials ScienceSelf-assembly0210 nano-technologyPolarization (electrochemistry)Perovskite (structure)
researchProduct

The electronic properties of SrTiO3-δ with oxygen vacancies or substitutions

2021

The authors would like to thank R. Dittmann for useful discussions, T. Kocourek, O. Pacherova, S. Cichon, V. Vetokhina, and P. Babor for their contributions to sample preparation and characterization. The authors (M.T., A.D.) acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme “Research, Development and Education” (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760). This study was partly supported by FLAG-ERA JTC project To2Dox (L.R. and E.K.). Calculations have been performed on the LASC Cluster in the Institute of Solid State Phy…

Ferroelectrics and multiferroicsMaterials scienceElectronic properties and materialsBand gapScienceOxide02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesArticlechemistry.chemical_compoundSurfaces interfaces and thin filmsThin filmPerovskite (structure)MultidisciplinaryCondensed matter physicsbusiness.industry4. EducationQR021001 nanoscience & nanotechnology0104 chemical sciencesSemiconductorchemistryStrontium titanate:NATURAL SCIENCES [Research Subject Categories]MedicineCrystallite0210 nano-technologybusinessScientific Reports
researchProduct

Interface-induced enhancement of piezoelectricity in the (SrTiO 3 ) m /(BaTiO 3 ) M−m superlattice for energy harvesting applications

2019

This research is funded by the Latvian Council of Science, project No. lzp-2018/1-0147. The computer resources were provided by Stuttgart Supercomputing Center (project DEFTD 12939) and Latvian Super Cluster (LASC). Many thanks to R. Dovesi, A. Erba, and M. Rérat for numerous stimulating discussions.

Materials scienceCondensed matter physicsSuperlatticePhase (waves)General Physics and Astronomy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyPiezoelectricityFerroelectricitySymmetry (physics)0104 chemical sciencesHybrid functionalTetragonal crystal system:NATURAL SCIENCES:Physics [Research Subject Categories]Physical and Theoretical Chemistry0210 nano-technologyBasis set
researchProduct

Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies

2020

The first-principles (ab initio) computations of the structural, electronic, and phonon properties have been performed for cubic and low-temperature tetragonal phases of BaTiO3 and SrTiO3 perovskite crystals, both stoichiometric and non-stoichiometric (with neutral oxygen vacancies). Calculations were performed with the CRYSTAL17 computer code within the linear combination of atomic orbitals approximation, using the B1WC advanced hybrid exchange-correlation functional of the density-functional-theory (DFT) and the periodic supercell approach. Various possible spin states of the defective systems were considered by means of unrestricted (open shell) DFT calculations. It was demonstrated that…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Spin statesAb initioGeneral Physics and Astronomy01 natural sciencesMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsLinear combination of atomic orbitalsVacancy defect0103 physical sciencesPhysics::Atomic and Molecular Clusterssymbols010306 general physicsRaman spectroscopyOpen shellPerovskite (structure)Low Temperature Physics
researchProduct

Electromechanical Properties of Ba(1–x)SrxTiO3 Perovskite Solid Solutions from First-Principles Calculations

2017

Many thanks to M. Maček-Kržmanc, R. A. Evarestov, D. Gryaznov and D. Fuks for fruitful discussions. This study was supported by the ERA-NET HarvEnPiez project.

ChemistryThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricityFerroelectricityHybrid functionalTetragonal crystal systemComputational chemistryLinear combination of atomic orbitalsPhase (matter)0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Physical and Theoretical Chemistry010306 general physics0210 nano-technologyPerovskite (structure)Solid solution
researchProduct

Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

2021

The authors would like to thank P. Yudin for valuable discussions, N. Nepomniashchaia for VASE studies, and S. Cichon for XPS analysis. The authors acknowledge support from the Czech Science Foundation (Grant No. 19-09671S), the European Structural and Investment Funds and the Ministry of Education, Youth and Sports of the Czech Republic through Programme ‘‘Research, Development and Education’’ (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16-019/0000760), and ERA NET project Sun2Chem (E. K. and L. R.). Calculations have been done on the LASC Cluster in the ISSP UL.

010302 applied physicsMaterials scienceRelaxation (NMR)Oxidechemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciencesOxygenMetalCrystalchemistry.chemical_compoundchemistryChemical physicsvisual_art0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Chemistryvisual_art.visual_art_mediumThin film0210 nano-technologyPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Water Splitting on Multifaceted SrTiO3 Nanocrystals: Calculations of Raman Vibrational Spectrum

2022

The financial support of M-ERA.net SunToChem project is greatly acknowledged by L.L.R. and Y.A.M. This paper is partly based upon COST (European Cooperation in Science and Technology) Action 18234 Short Term Scientific Mission. The support is greatly acknowledged by E.K. and V.K. The Institute of Solid State Physics, University of Latvia (Latvia) as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Frame-work Programme H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under grant agreement No. 739508, project CAMART2. The computer resources were provided by the Stuttgart Supercomputing Center (HLRS project DEFTD 12939) and Latvian Super Cluster (LASC).

STOCondensed Matter::Materials ScienceRaman calculation:NATURAL SCIENCES [Research Subject Categories]General Materials Sciencestepped surfacePhysics::Chemical PhysicsSTO; Raman calculation; DFT; stepped surfaceDFTMaterials
researchProduct

Protein and solvent dynamics of the water-soluble chlorophyll-binding protein (WSCP)

2015

This study presents quasielastic neutron scattering data of the water-soluble chlorophyll-binding protein (WSCP) and the corresponding buffer solution at room temperature. The contributions of protein and buffer solution to the overall scattering are carefully separated. Otherwise, the fast water dynamics dominating the buffer contribution is likely to mask the slow protein dynamics. In the case of WSCP, the protein scattering can be described by two contributions: i) internal protein dynamics represented by a diffusion in a sphere with an average radius of 2.7 u A and ii) global (Brownian) diffusion of the WSCP macromolecule with an upper limit for the translational diffusion coefficient o…

ScatteringPhysicsQC1-999Protein dynamicsDiffusionAnalytical chemistryBuffer solutionSolventCrystallographychemistry.chemical_compoundchemistryQuasielastic neutron scatteringChlorophyll bindingMacromoleculeEPJ Web of Conferences
researchProduct

Ab initio simulation of (Ba,Sr)TiO3 and (Ba,Ca)TiO3 perovskite solid solutions

2019

This research was supported by the ERA-NET HarvEnPiez project. Many thanks to R. Dovesi, M.M. Kržmanc and D. Gryaznov for fruitful discussions.

First-principles computationAb initio:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theory (DFT)Perovskite solid solutionLead-free piezoelectric
researchProduct