0000000000711226
AUTHOR
Jörg Wrachtrup
Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond
Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …
Fluorescence and spin properties of defects in single digit nanodiamonds
International audience; This article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, …
Single Molecule Spectroscopy of Oriented Recombinant Trimeric Light Harvesting Complexes of Higher Plants
The bleaching dynamics of reconstituted single light-harvesting chlorophyll a/b investigated. The complexes containing one histidine6 tag per monomeric subunit were immobilised predominantly in a defined orientation with their symmetry axis perpendicular to a Ni-ion-containing surface allowing for the first time the examination of single LHCIIb in an aqueous environment. Most complexes exhibit photobleaching in one step, indicating coupling between the monomeric subunits leading to an energy transfer between adjacent subunits. Differences in bleaching behaviour between these and previous observations with single LHCIIb are discussed.
Deterministic Single-Ion Implantation of Rare-Earth Ions for Nanometer-Resolution Color-Center Generation
Single dopant atoms or dopant-related defect centers in a solid state matrix provide an attractive platform for quantum simulation of topological states, for quantum computing and communication, due to their potential to realize a scalable architecture compatible with electronic and photonic integrated circuits. The production of such quantum devices calls for deterministic single atom doping techniques because conventional stochastic doping techniques are cannot deliver appropriate architectures. Here, we present the fabrication of arrays of praseodymium color centers in YAG substrates, using a deterministic source of single laser-cooled Pr$^+$ ions. The beam of single Pr$^+$ ions is extra…
Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond
Sensing vector magnetic fields is critical to many applications in fundamental physics, bioimaging, and material science. Magnetic-field sensors exploiting nitrogen-vacancy (NV) centers are particularly compelling as they offer high sensitivity and spatial resolution even at nanoscale. Achieving vector magnetometry has, however, often required applying microwaves sequentially or simultaneously, limiting the sensors' applications under cryogenic temperature. Here we propose and demonstrate a microwave-free vector magnetometer that simultaneously measures all Cartesian components of a magnetic field using NV ensembles in diamond. In particular, the present magnetometer leverages the level ant…