6533b82ffe1ef96bd12952c6

RESEARCH PRODUCT

Fluorescence and spin properties of defects in single digit nanodiamonds

Kurt AulenbacherRoman KolesovBoris NaydenovMichael BörschRainer ErdmannAlain ThorelGopalakrischnan BalasubramanianFedor JelezkoBernhard GrotzRolf ReuterJörg WrachtrupJean-paul BoudouMohamed SennourPhilip R. HemmerJulia TislerPatrick A. Curmi

subject

Fluorescent nanoparticleMaterials sciencePhotoluminescenceDephasingGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslaw.invention[SPI.MAT]Engineering Sciences [physics]/MaterialslawElectron beam processingGeneral Materials Scienceconfocal fluorescence microscopyElectron paramagnetic resonancebusiness.industrydefects in diamondelectron spin resonanceGeneral EngineeringDiamond021001 nanoscience & nanotechnologyFluorescencefluorescence lifetime imaging0104 chemical sciencesNanocrystalengineeringOptoelectronicssingle molecule spectroscopysingle spin manipulation0210 nano-technologybusiness

description

International audience; This article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, which is typical for the type Ib diamond from which the nanoparticle is made. We conclude that despite the tiny size of these nanodiamonds the photoactive nitrogen-vacancy color centers retain their bulk properties to the benefit of numerous exciting potential applications in photonics, biomedical labeling, and imaging.

10.1021/nn9003617https://hal-mines-paristech.archives-ouvertes.fr/hal-00481219