0000000000714156
AUTHOR
Serena Carbone
Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles
none 6 no First Online: 14 October 2014 The aim of this work was to investigate the effect of engineered nanoparticles (NPs) on soil microbial biomass C (MBC) and on earthworm Lumbricus rubellus. An artificial soil was incubated for 4 weeks with earthworms fed with vegetable residues contaminated by NPs, consisting of Ag, Co, Ni and TiO2. After the treatments, soils were analysed for MBC and total and water soluble metal-NPs, whereas earthworms were purged for 28 days and then analysed for fatty acids (FAs) and total metal-NPs. Longitudinal sections of earthworms were investigated by environmental scanning electron microscopy (ESEM), equipped with energy-dispersive X-ray spectroscopy (EDS),…
Native and planted forest species determine different carbon and nitrogen pools in Arenosol developed on Holocene deposits from a costal Mediterranean area (Tuscany, Italy)
In a coastal Mediterranean area, the effects of two native [Quercus ilex (Holm), Alnus glutinosa and Fraxinus oxycarpa (Hygro)] and one planted [Pinus pinaster (Pine)] forest species on both content and quality of organic C and total N pools in Arenosols was assessed. Three soil profiles per each forest cover were opened and sampled. Total N in the organic layers was not affected by forest covers, whereas total organic C ranged from 36.1 to 63.2 Mg ha−1, being organic layers under Hygro those with the highest contents. Total organic C in the first 50 cm of mineral soil was 64 Mg ha−1 under Holm and 36.7 and 37.6 Mg ha−1 under Pine and Hygro, respectively. Soil covered by Holm and Hygro stor…
Effect of cobalt and silver nanoparticles and ions on Lumbricus rubellus health and on microbial community of earthworm faeces and soil
The aim of this study was to investigate the impact of silver and cobalt, supplied both as ions and nanoparticles (Ag+, Co2+, AgNPs, CoNPs) through contaminated food to earthworms (Lumbricus rubellus), on their health as well as on microbial community of both soil and earthworm faeces. Earthworms and microbes were exposed to the contaminants in laboratory microcosms with artificial soil. Contaminants were supplied once a week for 5 weeks by spiking them on horse manure. The accumulation of CoNPs and Co2+ in earthworm tissues was two and three times greater than AgNPs and Ag+, respectively. Except for AgNPs, contaminants significantly affected microbial community structure of earthworm faece…