0000000000724093

AUTHOR

Benedikt Dänekamp

showing 11 related works from this author

Influence of hole transport material ionization energy on the performance of perovskite solar cells

2019

Halide perovskites have shown excellent photophysical properties for solar cell applications which led to a rapid increase of the device efficiency. Understanding the charge carrier dynamics within the active perovskite absorber and at its interfaces will be key to further progress in their development. Here we present a series of fully evaporated devices employing hole transport materials with different ionization energies. The open circuit voltage of the devices, along with their ideality factors, confirm that the former is mainly determined by the bulk and surface recombination in the perovskite, rather than by the energetic offset between the valence band of the perovskite and the highe…

Materials scienceOpen-circuit voltagebusiness.industryHalide02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceslaw.inventionlawSolar cellMaterials ChemistryValence bandOptoelectronicsCharge carrierIonization energy0210 nano-technologybusinessMaterialsHOMO/LUMOCèl·lules fotoelèctriquesPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies

2019

The extraction of photogenerated holes from CH3NH3PbI3 is crucial in perovskite solar cells. Understanding the main parameters that influence this process is essential to design materials and devices with improved efficiency. A series of vacuum deposited hole transporting materials (HTMs) of different ionization energies, used in efficient photovoltaic devices, are studied here by means of femtosecond transient absorption spectroscopy. We find that ultrafast charge injection from the perovskite into the different HTMs (<100 fs) competes with carrier thermalization and occurs independently of their ionization energy. Our results prove that injection takes place from hot states in the valence…

Materials science530 Physicslcsh:Biotechnology02 engineering and technologyElectronTrapping7. Clean energy01 natural sciencesVacuum depositionlcsh:TP248.13-248.65540 Chemistry0103 physical sciencesUltrafast laser spectroscopyGeneral Materials ScienceMaterialsPerovskite (structure)010302 applied physicsGeneral EngineeringCarrier lifetime021001 nanoscience & nanotechnologylcsh:QC1-999SemiconductorsChemical physicsFemtosecondIonization energy0210 nano-technologylcsh:PhysicsAPL Materials
researchProduct

Room-Temperature Cubic Phase Crystallization and High Stability of Vacuum-Deposited Methylammonium Lead Triiodide Thin Films for High-Efficiency Sola…

2019

Methylammonium lead triiodide (MAPI) has emerged as a high-performance photovoltaic material. Common understanding is that at room temperature it adopts a tetragonal phase and it only converts to the perfect cubic phase around 50-60 ºC. Most MAPI films are prepared using a solution-based coating process, yet they can also be obtained by vapor phase deposition methods. Vapor phase processed MAPI films have significantly different characteristics compared to their solvent processed analogous, such as a relatively small crystal grain sizes and short excited state lifetimes. Yet solar cells based on vapor phase processed MAPI films exhibit high power conversion efficiencies. Surprisingly, after…

Materials scienceAnalytical chemistry02 engineering and technologyCubic crystal system010402 general chemistry7. Clean energy01 natural scienceslaw.inventionchemistry.chemical_compoundTetragonal crystal systemlawPhase (matter)Deposition (phase transition)General Materials ScienceThin filmTriiodideCrystallizationMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Mechanical Engineering021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materials0210 nano-technology
researchProduct

Working mechanisms of vacuum-deposited perovskite solar cells

2018

Materials scienceChemical engineeringPerovskite (structure)Proceedings of the 10th International Conference on Hybrid and Organic Photovoltaics
researchProduct

Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices

2021

The interaction between semiconductor materials and electromagnetic fields resonating in microcavities or the light-matter coupling is of both fundamental and practical significance for improving the performance of various photonic technologies. The demonstration of light-matter coupling effects in the emerging perovskite-based optoelectronic devices via optical pumping and electrical readout (e.g., photovoltaics) and vice versa (e.g., light-emitting diodes), however, is still scarce. Here, we demonstrate the microcavity formation in vacuum-deposited methylammonium lead iodide (CH3NH3PbI3, MAPI) p-i-n photovoltaic devices fabricated between two reflecting silver electrodes. We tune the posi…

Materials sciencebusiness.industrylight-matter couplingPhotovoltaic systemPhysics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsphotovoltaicmicrocavity devicehybrid organic inorganic perovskiteOptoelectronicsvacuum depositionElectrical and Electronic EngineeringbusinessMaterialsBiotechnologyPerovskite (structure)
researchProduct

Interfacial engineering for single and multijunction vacuum-deposited perovskite solar cells

2019

Materials scienceChemical engineeringInterfacial engineeringPerovskite (structure)Proceedings of the 1st Interfaces in Organic and Hybrid Thin-Film Optoelectronics
researchProduct

Tuning of the electronic and photophysical properties of ladder-type quaterphenyl by selective methylene-bridge fluorination

2016

The photophysics (spectral positions, band shapes, fluorescence quantum yields and lifetimes) of a series of fluorinated ladder type quaterphenyls L4P and L4P-Fn (n = 2, 4, 6) depend strongly on the degree and position of fluorine, despite the fact that substitution is not performed in the rings but only in methylene-bridges. This is driven by subtle differences in the molecular orbitals (MOs) participating in the electronic transitions, and in the vibronic pattern of the S0 and S1 electronic states as revealed by (TD)DFT calculations. Solid state spectra for n = 0, 2, 4 are similar to those of solution due to small intermolecular interactions as revealed by combined X-ray and (TD)DFT analy…

Intermolecular forceGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyMethylene bridge010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescenceSpectral line0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryComputational chemistryAtomic electron transitionFluorineMolecular orbitalPhysical and Theoretical Chemistry0210 nano-technologyQuantum
researchProduct

Efficient wide band gap double cation – double halide perovskite solar cells

2017

In this work we study the band gap variation and properties of the perovskite compound Cs0.15FA0.85Pb(BrxI1−x)3 as a function of the halide composition, with the aim of developing an efficient complementary absorber for MAPbI3 in all-perovskite tandem devices. We have found the perovskite stoichiometry Cs0.15FA0.85Pb(Br0.7I0.3)3 to be a promising candidate, thanks to its band gap of approximately 2 eV. Single junction devices using this perovskite absorber lead to a maximum PCE of 11.5%, among the highest reported for solar cells using perovskites with a band gap wider than 1.8 eV.

Materials scienceChemical substanceTandemRenewable Energy Sustainability and the Environmentbusiness.industryBand gapWide-bandgap semiconductorHalideNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesOptoelectronicsGeneral Materials Science0210 nano-technologyScience technology and societybusinessStoichiometryPerovskite (structure)Journal of Materials Chemistry A
researchProduct

Efficient Photo- and Electroluminescence by Trap States Passivation in Vacuum-Deposited Hybrid Perovskite Thin Films

2018

Methylammonium lead iodide (MAPI) has excellent properties for photovoltaic applications, although it typically shows low photoluminescence quantum yield. Here, we report on vacuum-deposited MAPI perovskites obtained by modifying the methylammonium iodide (MAI) to PbI2 ratio during vacuum deposition. By studying the excitation density dependence of the photoluminescence lifetime, a large concentration of trap states was deduced for the stoichiometric MAPI films. The use of excess MAI during vacuum processing is capable of passivating these traps, resulting in luminescent films which can be used to fabricate planar light-emitting diodes with quantum efficiency approaching 2%.

Materials sciencePhotoluminescencePassivationbusiness.industryQuantum yield02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesVacuum depositionOptoelectronicsQuantum efficiencyGeneral Materials ScienceThin film0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Perovskite-Perovskite Homojunctions via Compositional Doping.

2018

One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite–perovskite homojunctions have not been reported. Here we present a perovskite–perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI2, obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is…

Materials sciencebusiness.industryDopingInfrared spectroscopy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSemiconductorVacuum depositionOptoelectronicsGeneral Materials SciencePhysical and Theoretical ChemistryThin filmHomojunction0210 nano-technologybusinessVolta potentialPerovskite (structure)The journal of physical chemistry letters
researchProduct

Novel architectures and materials for perovskite opto‐electronics

2018

Photovoltaic and light emitting devices based on perovskites have shown an impressive development in the last years. Despite the fast progress, many studies relied still on a trial and error approach in order to further boost device efficiencies. The aim of the thesis is therefore to get further inside into phenomena related to the fundamental photophysics on both perovskite solar cells and LEDs. The work has been structured in three parts: Perovskite‐Perovskite Homojunctions via Compositional Doping. One of the most important properties of semiconductors is the possibility to control their electronic properties via intentional doping. Nevertheless doping in perovskite remains nearly unexpl…

UNESCO::FÍSICA::Física molecular:FÍSICA::Física molecular [UNESCO]:FÍSICA [UNESCO]materiales ópticosUNESCO::FÍSICAperovskita:FÍSICA::Electromagnetismo [UNESCO]nanotecnologiaUNESCO::FÍSICA::Electromagnetismo
researchProduct