0000000000724150

AUTHOR

Jean-noël Paoli

showing 16 related works from this author

Chapitre 10: Le désherbage de précision

2018

International audience; Trop longtemps dépendante des seuls herbicides, l'agriculture doit évoluer vers une gestion des plantes adventices, ou " mauvaises herbes ", s'appuyant sur un ensemble de pratiques culturales et de régulations écologiques, avec l'objectif de limiter l'abondance des adventices, de garantir le revenu des agriculteurs, tout en préservant la biodiversité et la qualité de l'environnement. Cet ouvrage explore les moyens et stratégies de gestion durable des communautés adventices faisant appel aux principes de la protection intégrée et à une démarche " agroécologique ".

[SDV] Life Sciences [q-bio][SDV.SA.AGRO] Life Sciences [q-bio]/Agricultural sciences/AgronomyGestion durables[SDV]Life Sciences [q-bio][SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomyAdventicesDésherbage
researchProduct

L'imagerie multispectrale embarquée pour caractériser la croissance et l'état sanitaire du feuillage de la vigne

2015

Multispectral imaging systems are widely used in remote sensing and applied to viticulture context for the canopy characterization. This technique is not used in proximal sensing, to characterize vineyard foliage. Yet the results of field tests led in fixed position have revealed its capacity to estimate the leaf area. The aim of this project is to assess the suitable of a multispectral imaging system as an embedded sensor for vine foliage characterization. To this end, a multispectral camera acquiring visible and near-infrared images and a Greenseeker RT-100 apparatus providing an NDVI (Normalized Difference Vegetation Index), were installed on a track laying tractor. It was equipped with …

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[ SDV ] Life Sciences [q-bio][INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingNDVI[SDV]Life Sciences [q-bio]croissance foliairefoliage developmentImagerie multispectrale embarquée[SDV] Life Sciences [q-bio]zone des grappes[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processingembedded multispectral imaging systemberry area development[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyProxidétectionproximal sensing;embedded multispectral imaging system;foliage development;berry area development;NDVIproximal sensing
researchProduct

Robotics for weed control: I-Weed Robot for a specific spraying

2012

International audience; To preserve environment for a sustainable agriculture, we explore the development of a new autonomous robot, called I-Weed Robot (Intelligent Weed Robot), which aims at reducing herbicides in crop fields (maize, sunflower...). Using a high precision positioning signal (RTK) to locate the robot in the field, a Kaman filter and a proportional-integral-derivative controller (PID controller) allow adjusting the orientation of the robot depending on a predefined trajectory. As for the spraying system, a camera in front of the mobile platform detects weed plants thanks to an image processing based on a crop/weed discrimination algorithm (Hough Transform). At the back a spr…

[SDV] Life Sciences [q-bio]weed controlherbicidesPrecision agriculturespraying[SDV]Life Sciences [q-bio]robotsmachine visionWeedsalgorithms[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
researchProduct

« On-the-go » multispectral imaging system to characterize the development of vineyard foliage

2015

International audience; In Precision Viticulture, multispectral imaging systems are currently used in remote sensing for vineyard vigor characterization but few are employed in proximal sensing. This work presents the potential of a proximal multispectral imaging system mounted on a track-laying tractor equipped with a Greenseeker RT-100 to provide an NDVI index. The camera acquired visible and near-infrared images which were calibrated in reflectance. Vegetation indices were computed and compared to Greenseeker data. From two of the resulting datasets, a spatio-temporal study of foliage description through both optical systems is presented. This first study assessed the proximal imagery re…

0106 biological sciences010104 statistics & probability[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingNDVImultispectral imagingfoliage characterizationprecision viticulture15. Life on land0101 mathematics01 natural sciencesin-field acquisition010606 plant biology & botany
researchProduct

DeepIndices : Une nouvelle approche des indices de télédétection basée sur l'optimisation et l'approximation de fonctions par DeepLearning. Applicati…

2021

National audience; L'une des avancées les plus importantes dans le domaine de l'observation de la terre est la découverte des indices spectraux, ils ont notamment prouvé leur efficacité dans la caractérisation des surfaces agricoles, mais ils sont généralement définis de manière empirique. Cette étude basée sur l'intelligence artificielle et le traitement du signal, propose une méthode pour trouver un indice optimal. Et porte sur l'analyse d'images issues d'une caméra multi-spectrale, utilisée dans un contexte agricole pour l'acquisition en champ proche de végétation. À partir de six bandes spectrales, cinq modèles ont été testés et déployés dans un framework d'apprentissage profond. Les pe…

TélédétectionAgriculture de précisionIndices spectral[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture[SDV.SA.STA] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyImages multi-spectraleProxidétectionDeep-learning
researchProduct

Robotique et imagerie pour le désherbage localisé

2020

National audience; L’agriculture moderne est en train d’évoluer vers des systèmes moins dépendants en pesticides (dont les herbicides restent les pesticides les plus difficiles à réduire) en ayant recours de plus en plus à des outils de précision (capteurs, plateformes mobiles) pour évaluer et prendre en compte la variabilité intra-parcellaire. Dans ce contexte, ces outils se présentent comme des leviers techniques pour une gestion raisonnée des bioagresseurs, et plus particulièrement les adventices. Cela nécessite de caractériser au mieux l’état d’infestation d’une parcelle grâce à des technologies non-invasives et à haut débit d’acquisition comme l’imagerie afin de réaliser un désherbage …

[SPI]Engineering Sciences [physics][SPI] Engineering Sciences [physics]agroécologieimagerierobotiquedésherbage
researchProduct

Dispositifs d’imagerie multi-spectrale pour la détection et le contrôle des adventices

2007

National audience; pas de résumé

[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingImagerie multi-spectraleAdventices
researchProduct

Détection non supervisée des adventices par drone : résultats et limites

2019

Dans un cadre de diminution des produits phytosanitaires, l'agriculture de précision est une solution technique pour diminuer l'impact environnemental de l'agriculture sans transformer les systèmes de production actuels. La démocratisation des drones aériens pour l'agriculture permet leur utilisation afin de discriminer culture et adventices au sein de parcelles cultivées. Nous avons développé et testé des algorithmes non supervisés (ne nécessitant pas l’intervention d’un humain) combinant l'information spatiale et spectrale pour réaliser cette discrimination. Cette présentation sera l'occasion de revenir sur les résultats de ces algorithmes et de présenter également les limites rencontrées…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologytraitement d’images[SDV.BV] Life Sciences [q-bio]/Vegetal Biologydiscrimination culture/adventicesinformation spatiale et spectralealgorithme non supervisé
researchProduct

I-Weed robot : un outil pour l'étude de population de plantes adventices

2016

The I-Weed robot is a small autonomous platform that aims to characterize the vegetation in an inter-row maize crop for a spot spraying: spraying is done only where a weed is detected. This article presents how the robot works and aims to experimentally evaluate the ability to map weeds from a WeedSeeker system (Trimble) embedded on the I-Weed robot. The results are compared to those from an imaging system, used as ground truth. After analyzing a confusion matrix, it reveals that the system is able to correctly geotag plants at 75 % and is ready for a spot spraying.

[SDV] Life Sciences [q-bio]spot sprayingplantes adventices[ SDV ] Life Sciences [q-bio]automatic guidance[SDV]Life Sciences [q-bio]weedscartographierobotpulvérisation localiséemappingautoguidage
researchProduct

Weed detection by aerial imaging: impact of soil, crop and weed spectral mixing

2015

International audience; This study aims to evaluate spectral information potential of images captured with a UAV, for site specific weed management. The image acquisition chain was modeled in order to compute the digital values of image pixels, according to the field conditions and objects lying on the ground surface projected in the pixels. The object spectra are mixed in the same pixel to estimate the impact of the spatial resolution of the image. The classification potential into crop, weed and soil classes was studied usinf simulations based on the present multispectral sensor characteristics and according to different mixing rates.

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agricultureAcquisition chainmultispectral[ SDV.SA.STA ] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture[SDV.SA.STA] Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agricultureUnmanned aerial vehicleWeed classification
researchProduct

I-Weed Robot : un robot autoguidé pour un désherbage localisé

2013

We present the development of an autonomous robot, called I-Weed Robot (Intelligent Weed Robot), which aims at reducing herbicides in crop fields (maize, sunflower…). Using a high precision positioning signal (RTK) to locate the robot in the field, a Kalman filter and a proportional-integral-derivative controller (PID controller) allows adjusting the orientation and the speed of the robot depending on a predefined trajectory. As for the specific spraying system, a commercial system is used (weedseeker, Trimble) where the plant detection is obtained by an optical sensors just before to spray specifically on them. The performance of the guidance algorithm using numerical simulations (virtual …

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencessignal RTK[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyrobotadventicespulvérisation localiséeauto-guidage
researchProduct

Texture classificatication in a cloud computing environment for leaf roughness characterization in precision spraying applications

2010

International audience

[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH][INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]ComputingMilieux_MISCELLANEOUS
researchProduct

Towards the estimation of vole damage on grassland by aerial multispectral imaging

2017

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesComputingMilieux_MISCELLANEOUS
researchProduct

Vineyard leaf roughness characterization by computer vision and cloud computing technics

2010

International audience; In the context of vineyard leaf roughness analysis for precision spraying applications, this article deals with its characterization by computer vision and cloud computing techniques. The techniques merge feature extraction, linear or nonlinear dimensionality reduction techniques and several kinds of classification methods. Different combinations are processed and their performances compared in terms of classification error rate, in order to find the best association. However these combinations are hardly processed because of the lack of computing power and the prohibitive time consumption of the algorithms. To overcome these difficulties, we propose a solution: the …

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing[SDE.ES] Environmental Sciences/Environmental and Society[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing[SDE.ES]Environmental Sciences/Environmental and Society[ SDE.ES ] Environmental Sciences/Environmental and Society[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
researchProduct

Assessment of infield spatial variability of available water content on an experimental platform.

2019

National audience; Innovative strategies and genetic engineering solutions are needed in order to manage agroecosystems more efficiently, build improved varieties and reduce inputs. In this context, phenotyping has recently become a bottleneck for the selection of high-achieving stresstolerant genotypes. In France, the Phenome project is responding to these stakes with a network of various high throughput facilities distributed in relevant geographical locations for studies at different scales and conditions. Phenovia is a platform managed by Terres Inovia. It is incorporated into the INRA experimental unit (EU) of Epoisses, located in Bretenière (Côte-d’Or, Bourgogne-Franche- Comté, France…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

Approche multicritère pour la caractérisation des adventices par imagerie

2019

La réduction des produits phytosanitaires représente un des enjeux majeurs du secteur agricole. Les plans gouvernementaux Ecophyto, Ecophyto II et Ecophyto II+ visent à réduire fortement leurs usages et les solutions actuelles ne permettent pas d’obtenir les résultats escomptés. La détection des adventices par imagerie est un des axes de travail devant permettre cette réduction. La qualité de la discrimination cultures/adventices est fortement liée au type de méthodes utilisées, à la résolution spatiale des images et au stade de développement des plantes présentes. L'objectif de ce travail, est donc d'évaluer l’impact des différents critères pouvant être extraits depuis des images acquises …

[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingVision par ordinateurPrédiction[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study[SDV.SA.SDS] Life Sciences [q-bio]/Agricultural sciences/Soil studyStatistiqueAnalyse d'image
researchProduct