0000000000724699

AUTHOR

Simon Grabowsky

0000-0002-3377-9474

showing 23 related works from this author

Approaching an experimental electron density model of the biologically active trans ‐epoxysuccinyl amide group—Substituent effects vs. crystal packing

2017

The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us…

chemistry.chemical_classificationElectron densitybiology010405 organic chemistryChemistryCarboxylic acidOrganic ChemistryIntermolecular forceSubstituentActive siteContext (language use)010402 general chemistry01 natural sciences0104 chemical sciencesCrystallographychemistry.chemical_compoundAmideIntramolecular forcebiology.proteinPhysical and Theoretical ChemistryJournal of Physical Organic Chemistry
researchProduct

Synthesis, X-ray Structure Determination, and Comprehensive Photochemical Characterization of (Trifluoromethyl)diazirine-Containing TRPML1 Ligands

2021

Potential (trifluoromethyl)diazirine-based TRPML1 ion channel ligands were designed and synthesized, and their structures were determined by single-crystal X-ray diffraction analysis. Photoactivation studies via 19F NMR spectroscopy and HPLC-MS analysis revealed distinct kinetical characteristics in selected solvents and favorable photochemical properties in an aqueous buffer. These photoactivatable TRPML activators represent useful and valuable tools for TRPML photoaffinity labeling combined with mass spectrometry.

TrifluoromethylPhotoaffinity labelingTRPML010405 organic chemistryX-RaysOrganic ChemistryX-rayPhotoaffinity LabelsLigands010402 general chemistryPhotochemistryMass spectrometry01 natural sciencesMass Spectrometry0104 chemical sciencesCharacterization (materials science)chemistry.chemical_compoundDiazomethanechemistry540 ChemistryDiazirine570 Life sciences; biologyIon channelThe Journal of Organic Chemistry
researchProduct

Can Experimental Electron-Density Studies be Used as a Tool to Predict Biologically Relevant Properties of Low-Molecular Weight Enzyme Ligands?

2013

The case of protease inhibitor model compounds incorporating an aziridine or epoxide ring is used to exemplify how application of experimental electron-density techniques can be used to explain the biological properties of low-molecular weight enzyme ligands. This is furthermore seen in the light of a comparison of crystal and enzyme environments employing QM/MM computations to elucidate to which extent the properties in the crystal can be used to predict behavior in the biological surrounding.

chemistry.chemical_classificationElectron densityfungiEpoxideAziridineRing (chemistry)Protease inhibitor (biology)Inorganic ChemistryCrystalchemistry.chemical_compoundEnzymechemistryComputational chemistryBiological property540 ChemistrymedicineOrganic chemistry570 Life sciences; biologymedicine.drug
researchProduct

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

2015

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

010405 organic chemistryChemistryIntermolecular forceGeneral ChemistryCrystal structureBiochemical Activity010402 general chemistry01 natural sciencesCysteine proteaseCatalysisProtease inhibitor (biology)0104 chemical sciencesCrystallographyLoxistatinComplementarity (molecular biology)Materials ChemistrymedicineMoleculemedicine.drugNew Journal of Chemistry
researchProduct

Vinyl sulfone building blocks in covalently reversible reactions with thiols

2015

In the present study we use quantum-chemical calculations to investigate how the reactivity of vinyl sulfone-based compounds can be modified from an irreversible to a reversible reaction with thiols. Based on the predictions from theory, an array of nine different vinyl sulfones with systematically varying substitution pattern was synthesized and their crystal structures were determined. Subsequent Hirshfeld surface analyses employing the principle of electrostatic complementarity aid the understanding of the crystal packing of the synthesized compounds. Reactivity studies against the nucleophile 2-phenylethanethiol mirror the properties predicted by the quantum-chemical computations in sol…

010405 organic chemistryChemistrytechnology industry and agricultureGeneral ChemistryCrystal structureVinyl sulfone010402 general chemistry01 natural sciencesCombinatorial chemistryCatalysisReversible reaction0104 chemical sciencesCrystalNucleophileCovalent bondPolymer chemistryMaterials ChemistryReactivity (chemistry)New Journal of Chemistry
researchProduct

The Significance of Ionic Bonding in Sulfur Dioxide: Bond Orders from X-ray Diffraction Data

2012

A novel refinement technique for X‐ray diffraction data has been employed to derive S-O bond orders in sulfur dioxide experimentally. The results show that ionic S-O bonding dominates over hypervalency.

DiffractionSulfonylchemistry.chemical_classificationMolecular StructureChemistryInorganic chemistryHypervalent moleculeIonic bondingGeneral ChemistryBond orderCatalysischemistry.chemical_compoundX-Ray DiffractionX-ray crystallography540 ChemistryHumansSulfur DioxideMoleculePhysical chemistry570 Life sciences; biologySulfur dioxide
researchProduct

Similarities and differences between crystal and enzyme environmental effects on the electron density of drug molecules

2021

Abstract The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low‐molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. Howeve…

Electron densityStatic ElectricityElectrons010402 general chemistryLigands01 natural sciencesCatalysisprotease inhibitor540 ChemistryMoleculeelectron densityPolarization (electrochemistry)Quantumchemistry.chemical_classificationpolarizationFull Paperintermolecular interactions010405 organic chemistryOrganic ChemistryIntermolecular forceEnzyme InteractionGeneral ChemistryFull Papers0104 chemical sciences3. Good healthMolecular RecognitionEnzymeelectrostatic potentialchemistryPharmaceutical PreparationsLoxistatinChemical physics570 Life sciences; biology
researchProduct

Die Bedeutung ionischer Bindungsanteile in Schwefeldioxid - Bindungsordnungen aus Röntgenbeugungsdaten

2012

Materials scienceGeneral MedicineAngewandte Chemie
researchProduct

CCDC 1498221: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

(2S3S)-3-carbamoyl-2-ethoxycarbonyloxiraneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897063: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallography3-anilino-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897056: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal System3-(ethylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897057: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

3-((4-methylphenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2046165: Experimental Crystal Structure Determination

2021

Related Article: Kevin Schwickert, Micha Andrzejewski, Simon Grabowsky, Tanja Schirmeister|2021|J.Org.Chem.|86|6169|doi:10.1021/acs.joc.0c02993

Space GroupCrystallographyCrystal System5-methyl-N-{2-(piperidin-1-yl)-5-[3-(trifluoromethyl)-3H-diaziren-3-yl]phenyl}thiophene-2-sulfonamideCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 977799: Experimental Crystal Structure Determination

2015

Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-methyl-1-((3-methylbutyl)amino)-1-oxopentan-2-yl)carbamoyl)oxirane-2-carboxylic acidExperimental 3D Coordinates
researchProduct

CCDC 897062: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

3-((4-iodophenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897061: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal Structure3-((4-methoxyphenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2046164: Experimental Crystal Structure Determination

2021

Related Article: Kevin Schwickert, Micha Andrzejewski, Simon Grabowsky, Tanja Schirmeister|2021|J.Org.Chem.|86|6169|doi:10.1021/acs.joc.0c02993

Space GroupCrystallographyCrystal System5-methyl-N-{2-(piperidin-1-yl)-4-[3-(trifluoromethyl)-3H-diaziren-3-yl]phenyl}thiophene-2-sulfonamideCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897060: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallography3-(methylsulfanyl)-3-((4-nitrophenyl)amino)-2-(phenylsulfonyl)acrylonitrile hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897059: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-fluorophenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct

CCDC 2024395: Experimental Crystal Structure Determination

2021

Related Article: Florian Kleemiss, Erna K. Wieduwilt, Emanuel Hupf, Ming W. Shi, Scott G. Stewart, Dylan Jayatilaka, Michael J. Turner, Kunihisa Sugimoto, Eiji Nishibori, Tanja Schirmeister, Thomas C. Schmidt, Bernd Engels, Simon Grabowsky|2021|Chem.-Eur.J.|27|3407|doi:10.1002/chem.202003978

Space GroupCrystallographyCrystal Systempotassium (2S3S)-3-carbamoyloxirane-2-carboxylate monohydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897058: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-(benzylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct

CCDC 1498219: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersethyl (2R3R)-3-((S)-1-((benzyloxy)carbonyl)phenylalanyl)oxirane-2-carboxylateExperimental 3D Coordinates
researchProduct

CCDC 1498220: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal Systemcatena-[(mu-(2S3S)-3-carbamoyloxirane-2-carboxylic acid)-(mu-trifluoroacetato)-potassium]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct