0000000000731200

AUTHOR

Philippe Langella

showing 6 related works from this author

Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects.

2016

International audience; The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/ Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-gamma-producing gamma delta Tau cells in cancer lesions. The immune sensor, NOD2, limited CTX…

0301 basic medicineRichnessNod2 Signaling Adaptor Proteinmedicine.disease_causeMice0302 clinical medicineEnterococcus hiraeNOD2NeoplasmsIntestine Small[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyImmunology and AllergyGut MicrobiotaCancerbiology3. Good healthImmunosurveillanceInfectious Diseases030220 oncology & carcinogenesisBarnesiella intestinihominis[SDV.IMM]Life Sciences [q-bio]/ImmunologyImmunotherapymedicine.symptomInfectionmedicine.drugCyclophosphamideColonImmunologyTranslocationInflammation03 medical and health sciencesInterferon-gammaImmune systemMonitoring ImmunologicmedicineAnimalsImmunologic FactorsCyclophosphamideInflammationEnterococcus hiraeAntitumor ImmunityBacteriaDendritic CellsTh1 Cellsmedicine.diseasebiology.organism_classificationMice Inbred C57BL030104 developmental biologyIntestinal MicrobiotaImmunologyOvarian cancerImmunologic MemoryImmunity
researchProduct

Aqueous two-phase system cold-set gelation using natural and recombinant probiotic lactic acid bacteria as a gelling agent

2016

The present study aimed to entrap probiotic lactic acid bacteria (LAB) in a sodium alginate and sodium caseinate aqueous two-phase gel system. The natural acidifying properties of two therapeutic probiotic LAB were exploited to liberate calcium ions progressively from calcium carbonate (CaCO3), which caused the gelation of the co-existing phases. Bi-biopolymeric matrix gelation of GDL/CaCO3 or LAB/CaCO3 was monitored by dynamic rheological measurements, and the final gels were characterized by frequency dependence measurements and confocal laser scanning microscopy. Weak to strong gels were formed with an elastic modulus G' from 10 to 1.000Pa, respectively. After cold-set gelation of our sy…

Calcium alginate[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionProbiotic lactic acid bacteria01 natural sciencesPhase-separationchemistry.chemical_compoundLactonesColloid and Surface ChemistryGlucuronic AcidDrop sizeNa-caseinateMicroscopy Confocal010304 chemical physicsbiologyHexuronic AcidsTemperatureCaseins04 agricultural and veterinary sciencesSurfaces and InterfacesGeneral MedicineHydrogen-Ion Concentration040401 food scienceLactic acidLactococcus lactisWhey-proteinBiochemistryLactococcus-lactisEmulsionsRheologySodium alginateBiotechnologyGlucono-delta-lactoneWater emulsionsAlginateschemistry.chemical_elementCalciumGluconatesCalcium CarbonateImmobilization0404 agricultural biotechnology0103 physical sciencesRheological propertiesPhysical and Theoretical ChemistryGlucono delta-lactoneBiopolymeric gelProbioticsLactococcus lactisAqueous two-phase systemWaterGlucuronic acidbiology.organism_classificationKineticschemistryChemical engineeringAqueous two-phase system[SDV.AEN]Life Sciences [q-bio]/Food and NutritionGelsLactobacillus plantarumLactobacillus plantarum
researchProduct

Impact of probiotics on risk factors for cardiovascular diseases. A review.

2014

International audience; Probiotic microorganisms have historically been used to rebalance disturbed intestinal microbiota and to diminish gastrointestinal disorders, such as diarrhea or inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis). Recent studies explore the potential for expanded uses of probiotics on medical disorders that increase the risk of developing cardiovascular diseases and diabetes, such as obesity, hypercholesterolemia, arterial hypertension, and metabolic disturbances such as hyperhomocysteinemia and oxidative stress. This review aims at summarizing the proposed molecular and cellular mechanisms involved in probiotic-host interactions and to identi…

HypercholesterolemiaHyperhomocysteinemiaDiseaseBiologyIndustrial and Manufacturing Engineeringlaw.invention03 medical and health sciencesProbioticImmune systemRisk Factors[ CHIM.ORGA ] Chemical Sciences/Organic chemistrylawImmunityDiabetes mellitusDiabetes MellitusmedicineAnimalsHumansObesity030304 developmental biology0303 health sciences030306 microbiology[CHIM.ORGA]Chemical Sciences/Organic chemistryMicrobiotaProbioticsImmunityGeneral MedicineLipid Metabolismmedicine.diseaseObesityUlcerative colitisEnzymes3. Good healthIntestinesOxidative StressDiarrheaCardiovascular DiseasesHypertensionImmunologymedicine.symptomFood Science
researchProduct

Drying process strongly affects probiotics viability and functionalities

2015

International audience; Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and…

ved/biology.organism_classification_rank.speciesBioengineeringApplied Microbiology and Biotechnologylaw.invention03 medical and health sciencesProbioticlawLactobacillus[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringDesiccationFunctionality030304 developmental biologyBifidobacteriumDrying2. Zero hunger0303 health sciencesBifidobacterium bifidumMicrobial ViabilityMicrobial Viabilitybiology030306 microbiologyved/biologyProbioticsGeneral Medicinebiology.organism_classificationLactobacillusProcessBiochemistryViabilityBifidobacteriumDesiccationBacteriaLactobacillus plantarumBiotechnology
researchProduct

Age-Related Changes in the Gut Microbiota Modify Brain Lipid Composition

2020

PMCID: PMC6970973; International audience; Understanding the molecular mechanisms underlying the changes observed during aging is a prerequisite to design strategies to prevent age-related diseases. Aging is associated with metabolic changes, including alteration in the brain lipid metabolism. These alterations may contribute to the development of pathophysiological conditions. Modifications in the gut microbiota composition are also observed during aging. As communication axes exist between the gut microbiota and the brain and knowing that microbiota influences the host metabolism, we speculated on whether age-associated modifications in the gut microbiota could be involved in the lipid ch…

Fatty Acid DesaturasesMale0301 basic medicinelcsh:QR1-502Gene ExpressionGut floralcsh:MicrobiologyFatty Acids MonounsaturatedMiceCellular and Infection MicrobiologyAging brain[SDV.BDD]Life Sciences [q-bio]/Development BiologyOriginal Researchchemistry.chemical_classificationFatty AcidsAge FactorsBrainLipidscortexInfectious DiseasesFatty Acids Unsaturated[SDV.IMM]Life Sciences [q-bio]/Immunologylipids (amino acids peptides and proteins)SphingomyelinStearoyl-CoA DesaturasePolyunsaturated fatty acidMicrobiology (medical)medicine.medical_specialty[SDV.IMM] Life Sciences [q-bio]/ImmunologyFatty Acid ElongasesFADS1FADS2030106 microbiologyImmunologyBiologyliverdigestive systemMicrobiology03 medical and health scienceslipidInternal medicine[SDV.BDD] Life Sciences [q-bio]/Development BiologymedicinemicrobiotaAnimalsGerm-Free LifephospholipidagingFatty acidcholesterolLipid Metabolismbiology.organism_classificationGastrointestinal MicrobiomeTransplantation[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologyEndocrinologychemistryfatty acid[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFrontiers in Cellular and Infection Microbiology
researchProduct

Modulation of autophagy by probiotic bacteria: selecting and engineering strains able to stimulate autophagy in intestinal epithelial cells

2018

National audience

[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition[SDV.AEN]Life Sciences [q-bio]/Food and NutritionComputingMilieux_MISCELLANEOUS
researchProduct