0000000000739178

AUTHOR

Eva-verena Schaible

Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the B…

research product

Anticoagulation in patients with traumatic brain injury.

A major challenge in the treatment of brain-injured patients is the decision on indication and timing of prophylactic anticoagulation. In addition, an increasing number of patients suffering from traumatic brain injury (TBI) are on preinjury anticoagulation therapy. Despite clear evidence for an increased risk of venous thromboembolic events and pulmonary embolism in traumatized patients without prophylactic anticoagulation, there is a lack of distinct recommendations and standardized clinical practice guidelines. This review summarizes current research evidence regarding post-traumatic prophylactic anticoagulation and management of patients with prehospital use of anticoagulants.In additio…

research product

Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro–Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice*

Objectives:The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. H

research product

Single administration of tripeptide α-MSH(11-13) attenuates brain damage by reduced inflammation and apoptosis after experimental traumatic brain injury in mice.

Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11-13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels incr…

research product

Inhibition of Proteasomal Glucocorticoid Receptor Degradation Restores Dexamethasone-Mediated Stabilization of the Blood–Brain Barrier After Traumatic Brain Injury*

To establish the molecular background for glucocorticoid insensitivity, that is, failure to reduce edema formation and to protect blood-brain barrier integrity after acute traumatic brain injury.Controlled animal study.University research laboratory.Male C57Bl/6N mice.Mechanical brain lesion by controlled cortical impact.Our study demonstrates that 1) proteasomal glucocorticoid receptor degradation is established in brain endothelial cells after traumatic brain injury as a form of posttranslational glucocorticoid receptor modification; 2) inhibition of the proteasomal degradation pathway with bortezomib (0.2 mg/kg) in combination with the glucocorticoid dexamethasone (10 mg/kg) by subcutane…

research product

2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1α response after traumatic brain injury in mice

HIF-1α is pivotal for cellular homeostasis in response to cerebral ischemia. Pharmacological inhibition of HIF-1α may reduce secondary brain damage by targeting post-translational mechanisms associated with its proteasomal degradation and nuclear translocation. This study examined the neuroprotective effects of 2-methoxyestradiol (2ME2), the involved HIF-1α-dependent response, and alternative splicing in exon 14 of HIF-1α (HIF-1α∆Ex14) after traumatic brain injury (TBI) in mice. Intraperitoneal 2ME2 administration 30 min after TBI caused a dose-dependent reduction in secondary brain damage after 24 h. 2ME2 was physiologically tolerated, showed no effects on immune cell brain migration, and …

research product