0000000000739890
AUTHOR
Phil D. C. King
Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy
The electronic structure of well-ordered single-crystal thin films of CdO100 has been studied using angleresolved photoemission spectroscopy. Quantized electron subbands are observed above the valence-band maximum. The existence of these states provides evidence of an intrinsic electron accumulation space-charge layer near the CdO surface, an interpretation supported by coupled Poisson-Schrodinger calculations. The origin of the accumulation layer result is discussed in terms of the bulk band structure of CdO calculated using quasiparticle-corrected density-functional theory, which reveals that the conduction-band minimum at the Brillouin-zone center lies below the charge neutrality level.
Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations
The valence-band density of states of single-crystalline rock-salt CdO(001), wurtzite $c$-plane ZnO, and rock- salt MgO(001) are investigated by high-resolution x-ray photoemission spectroscopy. A classic two-peak structure is observed in the VB-DOS due to the anion $2p$-dominated valence bands. Good agreement is found between the experimental results and quasi-particle-corrected density-functional theory calculations. Occupied shallow semicore $d$ levels are observed in CdO and ZnO. While these exhibit similar spectral features to the calculations, they occur at slightly higher binding energies, determined as 8.8 eV and 7.3 eV below the valence band maximum in CdO and ZnO, respectively. Th…
Unification of the electrical behavior of defects, impurities, and surface states in semiconductors: Virtual gap states in CdO
In contrast to conventional semiconductors, native defects, hydrogen impurities, and surface states are all found to be donors in $n$-type CdO. Using this as a model system, the electrical behaviors of defects, dopants, and surface states in semiconductors are unified by a single energy level, the charge neutrality level, giving much insight into current materials and allowing a band-structure engineering scheme for obtaining desired custom electronic properties in new compound semiconductors.
Surface band-gap narrowing in quantized electron accumulation layers.
An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.