0000000000740640

AUTHOR

H. L. Ravn

showing 5 related works from this author

Nuclear Magnetic Moment ofTl207

1985

The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.

PhysicsMagnetic momentSHELL modelNuclear structureGeneral Physics and AstronomyPolarization (waves)Synchrotronlaw.inventionNuclear physicslawNuclear magnetic momentAtomic physicsNuclear ExperimentSpectroscopyHyperfine structurePhysical Review Letters
researchProduct

Production of radioactive Ag ion beams with a chemically selective laser ion source

1997

Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

Nuclear and High Energy PhysicsDye laserIon beamChemistryNuclear TheoryRadiochemistryPhysics::OpticsLaserIon sourceIonlaw.inventionIon beam depositionlawPhysics::Accelerator PhysicsIsobaric processPhysics::Atomic PhysicsNuclideNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Selective laser ionization of radioactive Ni-isotopes

1997

Abstract A chemically selective laser ion source based on resonance ionization of atoms in a hot cavity has been applied in the study of Ni-isotopes at the CERN-ISOLDE on-line isotope separator. Laser ionization enhanced the yields of long-lived Ni-isotopes almost four orders of magnitude when compared to the yields obtained with the surface ionization mode of the source. As a result, high yields of long-lived Ni-isotopes were obtained. Separation efficiencies of 0.3 and 0.8% were obtained for Ni produced in uranium-carbide, produced from uranium-di-pthalocyanine, and Ta-foil targets, respectively. Ni was found to be released very slowly from the present target and ion source combination.

Nuclear and High Energy PhysicsChemical ionizationMatrix-assisted laser desorption electrospray ionizationChemistryRadiochemistryAnalytical chemistryThermal ionizationIon sourceAtmospheric-pressure laser ionizationIonizationPhysics::Atomic PhysicsNuclear ExperimentInstrumentationElectron ionizationAmbient ionizationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

1998

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

PhysicsIsotopeSHELL modelFOS: Physical sciencesGeneral Physics and AstronomyIonizationQuasiparticleNuclear Physics - ExperimentNeutronNuclideNuclear Experiment (nucl-ex)Atomic physicsSpectroscopyNuclear ExperimentPhysical Review Letters
researchProduct

Charge radius change in the heavy tin isotopes until A = 132 from laser spectroscopy

2001

Laser spectroscopy measurements have been carried out on the very neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s 25p 23P 0 → 5s 25p6s 3P 1 optical transition, hyperfine spectra of 126-132Sn and 125m, 127m, 129m-131mSn where recorded for the first time. The variation of the mean-square charge radius ( δ〈r 2〉) between these nuclei and nuclear moments of the isomers and the odd isotopes were thus measured. An odd-even staggering which inverts at A = 130 is clearly observed. This indicates a small appearance of a plateau on the δ〈r 2〉 which has to be confirmed by measuring the isotope shift beyond A = 132.

PhysicsNuclear and High Energy PhysicsIsotopeChemistry010308 nuclear & particles physicsJahn–Teller effect[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Plateau (mathematics)01 natural sciencesSpectral lineCharge radius0103 physical sciencesIsotopes of tinNuclear fusionAtomic physics010306 general physicsSpectroscopyHyperfine structure
researchProduct