0000000000740640

AUTHOR

H. L. Ravn

Nuclear Magnetic Moment ofTl207

The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.

research product

Production of radioactive Ag ion beams with a chemically selective laser ion source

Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.

research product

Selective laser ionization of radioactive Ni-isotopes

Abstract A chemically selective laser ion source based on resonance ionization of atoms in a hot cavity has been applied in the study of Ni-isotopes at the CERN-ISOLDE on-line isotope separator. Laser ionization enhanced the yields of long-lived Ni-isotopes almost four orders of magnitude when compared to the yields obtained with the surface ionization mode of the source. As a result, high yields of long-lived Ni-isotopes were obtained. Separation efficiencies of 0.3 and 0.8% were obtained for Ni produced in uranium-carbide, produced from uranium-di-pthalocyanine, and Ta-foil targets, respectively. Ni was found to be released very slowly from the present target and ion source combination.

research product

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

research product

Charge radius change in the heavy tin isotopes until A = 132 from laser spectroscopy

Laser spectroscopy measurements have been carried out on the very neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s 25p 23P 0 → 5s 25p6s 3P 1 optical transition, hyperfine spectra of 126-132Sn and 125m, 127m, 129m-131mSn where recorded for the first time. The variation of the mean-square charge radius ( δ〈r 2〉) between these nuclei and nuclear moments of the isomers and the odd isotopes were thus measured. An odd-even staggering which inverts at A = 130 is clearly observed. This indicates a small appearance of a plateau on the δ〈r 2〉 which has to be confirmed by measuring the isotope shift beyond A = 132.

research product