0000000000743469

AUTHOR

E. Vallone

showing 29 related works from this author

Thermal-hydraulic behaviour of the DEMO divertor plasma facing components cooling circuit

2017

Abstract Within the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. A comparative evaluation study has been performed considering three different options for the cooling circuit layout of the divertor Plasma Facing Components (PFCs). The potential improvement in the thermal-hydraulic performance of the cooling system, to be achieved by modifying cooling circuit layout, has been also assessed and discussed in terms of optimization strategy. The research acti…

Work packageComputer scienceHydraulicsNuclear engineeringComputational fluid dynamics7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsMaterials Science(all)law0103 physical sciencesWater coolingGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodbusiness.industryMechanical EngineeringDivertorDEMO Divertor Plasma Facing Components CFD analysis HydraulicsPlasmaNuclear Energy and Engineeringbusiness
researchProduct

Hydraulic assessment of an upgraded pipework arrangement for the DEMO divertor plasma facing components cooling circuit

2021

Abstract In the context of the Work Package DIVertor (WPDIV) of the EUROfusion action, a research campaign has been carried out by University of Palermo in cooperation with ENEA to assess the thermal-hydraulic performances of the DEMO divertor cooling system, concentrating the attention on its 2019 Plasma Facing Components (PFCs) configuration, relevant to DEMO baseline 2017. The research activity has been performed following a theoretical-numerical technique based on the finite volume method and adopting the well-known ANSYS CFX CFD code. The PFCs cooling circuit thermal-hydraulic performances under nominal steady-state conditions, assessed mainly in terms of coolant total pressure drop, c…

Nuclear engineeringContext (language use)01 natural sciences010305 fluids & plasmaslaw.inventionDivertorlaw0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxMechanical EngineeringDivertorCoolantAxial compressorNuclear Energy and EngineeringEnvironmental scienceInlet manifoldCFD analysis
researchProduct

Computational thermofluid-dynamic analysis of DEMO divertor cassette body cooling circuit

2018

Abstract Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. Fully-coupled fluid-structure CFD analyses have been carried out for the recently-revised cassette body cooling circuit under nominal steady state conditions, imposing a non-uniform sp…

Neutron transportNuclear engineeringComputational fluid dynamicsThermofluid-dynamic01 natural sciences010305 fluids & plasmasDivertor0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressureCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodSteady stateCassette bodybusiness.industryDivertorMechanical EngineeringCoolantNuclear Energy and EngineeringEnvironmental scienceMaterials Science (all)business
researchProduct

Thermal-hydraulic study of the DEMO divertor cassette body cooling circuit equipped with a liner and two reflector plates

2021

Abstract In the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady-state thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focussed onto the most recent design of the Cassette Body (CB) cooling circuit, consistent with the DEMO baseline 2017 and equipped with a liner and two Reflector Plates (RPs), whose main functions are to protect the underlying vacuum pump hole from the radiation arising from plasma and shield the PFCs inlet distributors, respectively. The research ca…

Materials scienceNuclear engineeringComputational fluid dynamics7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlawShield0103 physical sciencesWater coolingGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCassette bodybusiness.industryMechanical EngineeringDivertorCassette body CFD analysis DEMO Divertor Thermofluid-dynamicsCoolantNuclear Energy and EngineeringFlow velocityVacuum pumpbusinessCFD analysis
researchProduct

First Flight Escape Probability and Uncollided Flux of Nuclear Particles in Convex Bodies with Spherical Symmetry

2016

This paper deals with the evaluation of the first flight escape probability of nuclear particles from convex bodies with spherical symmetry by means of some geometrical arguments and very simple probability considerations. The cases of a full sphere, a one-region spherical shell with an empty central zone, a spherical shell region containing a black central zone, and a full sphere with a sourceless shell have been considered. In all the aforementioned cases, a homogeneous medium and uniform isotropic source have been taken into account. Moreover, a simple and general formula has been derived for the calculation of the uncollided flux that is presupposed to be valid for arbitrary geometries.…

Physics020209 energyRegular polygonFlux02 engineering and technology01 natural sciences010305 fluids & plasmasClassical mechanicsNuclear Energy and EngineeringSimple (abstract algebra)0103 physical sciences0202 electrical engineering electronic engineering information engineeringFirst flight escape probability uncollided fluxCircular symmetrySettore ING-IND/19 - Impianti Nucleari
researchProduct

Eurofusion-DEMO Divertor - Cassette Design and Integration

2020

International audience; The Eurofusion-DEMO design will complete the Pre Conceptual Design phase (PCD) with a PCD Gate, named G1, scheduled to take place in Q4 2020 that will focus on assessing the feasibility of the plant and its main components prior to entering into the Conceptual Design phase. In the paper first an overview is given of the Eurofusion-DEMO Divertor Assembly including design and interface description, systems and functional requirements, load specification, system classification, manufacturing procedures and cost estimate. Then critical issues are discussed and potential design solutions are proposed, e.g.:- Neutron material damage limits of the different (structural) mat…

DEMO; Divertor; CAD DesignMaterials sciencePassive coolingNuclear engineeringPort (circuit theory)01 natural sciences7. Clean energy010305 fluids & plasmas[SPI]Engineering Sciences [physics]DivertorConceptual design0103 physical sciencesDEMO fusion reactorGeneral Materials ScienceCAD Design010306 general physicsDEMOnuclear fusionSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineeringelectromagnetic computationToroidNuclear heatingSeparatrixMechanical EngineeringDivertornuclear fusion plasma control electromagnetic computationNuclear Energy and EngineeringTUNGSTEN/EUROFER COATING SYSTEM CONCEPTUAL DESIGN COOLING CIRCUIT PROGRESS HCLLplasma controlHigh heat
researchProduct

On the numerical assessment of the thermal-hydraulic operating map of the DEMO Divertor Plasma Facing Components cooling circuit

2020

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic behaviour of the DEMO divertor cassette cooling system, focussing the attention on the 2018 configuration of the Plasma Facing Components (PFCs) circuit consistent with the DEMO baseline 2017. The research campaign has been carried out following a theoretical-computational approach based on the finite volume method and adopting the commercial Computational Fluid-Dynamic (CFD) code ANSYS CFX. A steady-state CFD analysis has been carried out for the …

Nuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxbusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringEnvironmental sciencebusinessCFD analysisFusion Engineering and Design
researchProduct

Structural assessment of the EU-DEMO WCLL Central Outboard Blanket segment under normal and off-normal operating conditions

2021

Abstract Within the framework of the EUROfusion design activities concerning the EU-DEMO Breeding Blanket (BB) system, a research campaign has been carried out at the University of Palermo with the aim of investigating the structural behaviour of the DEMO Water-Cooled Lithium Lead (WCLL) Central Outboard Blanket (COB) segment. The assessment has been performed considering three different loading scenarios: the Normal Operation (NO), the Over-Pressurization (OP) and the Upward Vertical Displacement Event (VDE-up). In particular, NO scenario represents the loading case referring to the nominal operating conditions, whereas the OP scenario refers to the loading conditions due to an in-box LOCA…

business.industryDesign activitiesMechanical EngineeringFEM analysisStructural engineeringVDEBlanketPlasma volumeVertical motionFinite element methodWCLLNuclear Energy and EngineeringPlasma chamberGeneral Materials ScienceVertical displacementBreeding blanketbusinessDEMOGeologySettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringEvent (probability theory)
researchProduct

Parametric study of the influence of First Wall cooling water on the Water Cooled Lithium Lead Breeding Blanket nuclear response

2019

Abstract In the framework of EUROfusion Work Package International Cooperation R&D activities, a close collaboration has been started among University of Palermo, ENEA Brasimone and ENEA Frascati for the development of the Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) concept. In this context, a research campaign has been carried out at the University of Palermo in order to investigate the influence of First Wall (FW) cooling water configuration on the nuclear response of the WCLL BB under irradiation in EU-DEMO, in order to gain useful indications for the WCLL BB pre-conceptual designs. To this end, three-dimensional nuclear analyses have been performed by MCNP5 v. 1.6 Monte Carlo…

Work packageNuclear engineeringNeutronicchemistry.chemical_elementContext (language use)DEMO reactorBlanket7. Clean energy01 natural sciences010305 fluids & plasmas0103 physical sciencesWater coolingNeutronicsDEMO reactor; Neutronics; WCLL blanketGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statisticsbusiness.industryMechanical EngineeringWater cooledNuclear powerWCLL blanketNuclear Energy and EngineeringchemistryEnvironmental scienceLithiumbusiness
researchProduct

Maturation of critical technologies for the DEMO balance of plant systems

2022

The Pre-Concept Design (PCD) of the Balance of Plant (BoP) systems of the EU-DEMO power plant is described in this paper for both breeding blanket (BB) concepts under assessment, namely the Water Cooled Lithium Lead (WCLL) BB and the Helium Cooled Pebble Bed (HCPB) BB. Moreover, the results of a preliminary evaluation of a number of BoP variants are discussed. This paper outlines the steps of the BoP design development, highlighting the project objectives and the strategy for their achievement under the very challenging requirements which include, among others, the intermittent nature of the DEMO plasma heat source. The main achievements during the PCD Phase will be reported together with t…

TechnologyBalance of plantElectric power distributionMechanical EngineeringHCPB BBSteam generatorPower conversion systemPower plants -- Design and constructionNuclear Energy and EngineeringSteam-boilersGeneral Materials SciencePower-plants -- Europebalance of plant; DEMO; HCPB BB; power conversion system; steam generator; WCLL BBddc:600DEMOWCLL BBSettore ING-IND/19 - Impianti NucleariDEMO; Balance of plant; WCLL BB; HCPB BB; Steam generator; Power conversion systemCivil and Structural Engineering
researchProduct

Progress in the initial design activities for the European DEMO divertor: Subproject "Cassette"

2017

Abstract Since 2014 preconceptual design activities for European DEMO divertor have been conducted as an integrated, interdisciplinary R&D effort in the framework of EUROfusion Consortium. Consisting of two subproject areas, ‘Cassette’ and ‘Target’, this divertor project has the objective to deliver a holistic preconceptual design concept together with the key technological solutions to materialize the design. In this paper, a brief overview on the recent results from the subproject ‘Cassette’ is presented. In this subproject, the overall cassette system is engineered based on the load analysis and specification. The preliminary studies covered multi-physical analyses of neutronic, thermal,…

EngineeringDesign activitiesNeutronic01 natural sciences7. Clean energy010305 fluids & plasmasThermal hydraulicsMaterials Science(all)0103 physical sciencesNeutronicsGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFocus (computing)business.industryDivertorMechanical EngineeringDEMO; Divertor cassette; Neutronics; Cooling; Thermohydraulics; Electromagnetic loadsDivertor cassetteThermohydraulicNuclear Energy and EngineeringDEMO Divertor cassette Neutronics Cooling Thermohydraulics Electromagnetic loadsSystems engineeringLoad analysisCooling; DEMO; Divertor cassette; Electromagnetic loads; Neutronics; Thermohydraulics; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical EngineeringElectromagnetic loadsMaterials Science (all)businessThermohydraulicsCooling
researchProduct

Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure

2015

Abstract Within the framework of the research and development activities supported by the ITER Organization on the blanket system issues, an intense analysis campaign has been performed at the University of Palermo with the aim to investigate the thermal-hydraulic behaviour of the cooling system of a standard 20° sector of ITER blanket during the draining transient operational procedure. The analysis has been carried out following a theoretical-computational approach based on the finite volume method and adopting the RELAP5 system code. In a first phase, attention has been focused on the development and validation of the finite volume models of the cooling circuits of the most demanding mod…

Finite volume methodRELAP5Computer simulationMechanical EngineeringNuclear engineeringBlanketCoolantThermal hydraulicsblanketNuclear Energy and EngineeringThermal-hydraulicWater coolingThermal-hydraulic RELAP5 Draining BlanketEnvironmental scienceGeneral Materials ScienceTransient (oscillation)drainingSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringElectronic circuit
researchProduct

On the hydraulic behaviour of ITER Shield Blocks #14 and #08. Computational analysis and comparison with experimental tests

2016

Abstract As a consequence of its position and functions, the ITER blanket system will be subjected to significant heat loads under nominal reference conditions. Therefore, the design of its cooling system is particularly demanding. Coolant water is distributed individually to the 440 blanket modules (BMs) through manifold piping, which makes it a highly parallelized system. The mass flow rate distribution is finely tuned to meet all operation constraints: adequate margin to burn out in the plasma facing components, even distribution of water flow among the so-called plasma-facing “fingers” of the Blanket First Wall panels, high enough water flow rate to avoid excessive water temperature in …

Pressure dropPipingComputer scienceWater flowMechanical EngineeringNuclear engineeringFull scaleBlanket CFD analysis HydraulicsBlanket01 natural sciences010305 fluids & plasmasCoolantNuclear Energy and Engineering0103 physical sciencesWater coolingMass flow rateGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Pre-conceptual design of EU-DEMO Divertor primary heat transfer systems

2021

Abstract In the frame of the activities promoted and encouraged by the EUROfusion Power Plant Physics and Technology (PPPT) department aimed at developing the EU-DEMO fusion reactor, strong emphasis has been recently addressed to the whole Balance of Plant (BoP) which represents the set of systems devoted to convert the plasma generated thermal power into electricity and to deliver it to the grid. Among these systems, the Divertor Primary Heat Transfer Systems (PHTSs) are intended to feed coolant to the two main components of the Divertor assembly, namely the Plasma Facing Components (PFCs) and the Cassette Body (CB). Since the DEMO Divertor must withstand high heat flux loads together with…

Balance of plantPower stationMechanical EngineeringNuclear engineeringDivertorThermal power stationBlanketFusion power01 natural sciences010305 fluids & plasmasCoolantDivertorNuclear Energy and EngineeringConceptual design0103 physical sciencesHeat exchangerPHTSGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Investigation of the DEMO WCLL Breeding Blanket Cooling Water Activation

2020

Abstract Within the framework of the activities foreseen by the EUROfusion action on the cooling water activation assessment for a DEMO reactor equipped with a Water Cooled Lithium Lead Breeding Blanket (WCLL BB), the University of Palermo is involved in the assessment of dose rates induced by the decay of nitrogen radioisotopes produced by water activation, nearby the main components (e.g. isolation valves) of both First Wall (FW) and Breeder Zone (BZ) cooling circuits. In particular, the aim of this work is to evaluate the spatial distribution of nitrogen isotopes (16N and 17N) in the WCLL BB cooling circuits. To this purpose, a coupled neutronic/fluid-dynamic problem is solved following …

Neutron transportMechanical EngineeringNuclear engineeringFlow (psychology)Isolation valveDEMO reactorBlanket01 natural sciences010305 fluids & plasmas010101 applied mathematicsNitrogen RadioisotopesBreeder (animal)Nuclear Energy and Engineering0103 physical sciencesHeat transferWater coolingNeutronicsEnvironmental scienceGeneral Materials ScienceWCLL BlanketFluid-dynamics0101 mathematicsSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Pre-conceptual design of EU DEMO balance of plant systems: Objectives and challenges

2021

Abstract The European Research Roadmap to the Realisation of Fusion Energy foresees that the DEMO reactor is going to succeed ITER in the pathway towards the exploitation of nuclear fusion, achieving long plasma operation time, demonstrating tritium self-sufficiency and producing net electric output on an industrial scale. Therefore, its design must be more oriented towards the Balance of Plant (BoP) than it is in ITER. Since the early pre-conceptual phase of the DEMO project, emphasis has been laid on identifying the main requirements affecting the overall architecture of the BoP. For instance, specific efforts and proper solutions have been envisaged to cope with the pulsed nature of the …

Computer scienceHCPBBalance of plant7. Clean energy01 natural sciencesPhase (combat)010305 fluids & plasmasConceptual design0103 physical sciencesOperation timeGeneral Materials ScienceArchitecture010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineeringbalance of plant; DEMO; HCPB; WCLLBalance of plantMechanical EngineeringEuropean researchIndustrial scaleWCLLDesign phaseNuclear Energy and Engineering13. Climate actionSystems engineeringBalance of plant DEMO HCPB WCLL
researchProduct

Thermal-hydraulic optimisation of the DEMO divertor cassette body cooling circuit equipped with a liner

2019

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focused onto the most recent design of the Cassette Body (CB) cooling circuit equipped with a Liner, whose main function is to protect the underlying vacuum pump hole from the radiation arising from the plasma. The research campaign has been carried out following a theoretical-computational approach based on the Finite Volume Method and adopting the commercial…

Materials scienceNuclear engineeringThermofluid-dynamic7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlaw0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringPressure dropThermofluid-dynamicsCassette bodyMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringFlow velocityVacuum pumpFusion Engineering and Design
researchProduct

On the thermal-hydraulic performances of the DEMO divertor cassette body cooling circuit equipped with a liner

2020

Abstract In the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady-state thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focussed onto the most recent design of the Cassette Body (CB) cooling circuit, consistent with the DEMO baseline 2017 and equipped with a liner, whose main function is to protect the underlying vacuum pump CB opening from plasma radiation. The research campaign has been carried out following a theoretical-computational approach based on the finite vo…

Materials scienceNuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlaw0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodThermofluid-dynamicsCassette bodybusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringVacuum pumpbusinessCFD analysisFusion Engineering and Design
researchProduct

On the thermal-hydraulic optimization of DEMO divertor plasma facing components cooling circuit

2018

Abstract Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. Attention has been focussed on the divertor Plasma Facing Components (PFCs) cooling circuit and a parametric analysis has been carried out in order to assess the potential impact of proper layout changes on its thermal-hydraulic performances, mainly in terms of coolant total pressure drop, flow velocity distribution and margin against critical heat flux occurrence. The r…

Nuclear engineeringComputational fluid dynamicsThermofluid-dynamic01 natural sciences7. Clean energy010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesWater coolingGeneral Materials ScienceCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodCritical heat fluxbusiness.industryDivertorMechanical EngineeringPlasma facing componentCoolantFlow velocityNuclear Energy and EngineeringEnvironmental scienceMaterials Science (all)businessFusion Engineering and Design
researchProduct

Structural verification and manufacturing procedures of the cooling system, for DEMO divertor target (OVT)

2019

The paper presents the design activities and testing plan of a vertical target mock-up, developed within the pre-conceptual design phase for DEMO Work Package DIV-1 “Divertor Cassette Design and Integration” - EUROfusion Power Plant Physics & Technology (PPPT) program. Activities concerning the Divertor Outboard Vertical Target cooling mock-up are presented in term of CAD model, thermal-hydraulic numerical simulation, structural analysis, structural integrity verification and manufacturing procedure. Moreover, the mechanical dimensions of support systems for Plasma Facing Components (PFCs), manifold and diffuser have been analyzed in detail, in order to avoid structural fault during the tes…

Power stationComputer simulationDesign activitiesDivertor target cooling mock-upNuclear engineeringDivertorMechanical EngineeringDivertor cassetteCADFault (power engineering)01 natural sciences010305 fluids & plasmasNuclear Energy and Engineering0103 physical sciencesWater coolingDEMO; Divertor cassette; Divertor target cooling mock-up; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical EngineeringGeneral Materials ScienceMaterials Science (all)Test plan010306 general physicsDEMO; Divertor cassette; Divertor target cooling mock-upDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Thermofluid-dynamic assessment of the EU-DEMO divertor single-circuit cooling option

2023

Until 2019, the thermo-hydraulic development of the EU-DEMO divertor was based on the “double-circuit” concept, in which two independent cooling circuits served by two different Primary Heat Transfer Systems were used to cool the Plasma-Facing Components (PFC) and the Cassette Body (CB). During the Divertor Final Design Review Meeting, held in May 2020, the possibility to adopt a single cooling circuit to serve both components was suggested. This new cooling circuit was originally conceived with the aim of simplifying remote maintenance, with potential benefits for some aspects of safety and balance of plant design and integration. During the years from 2020 to 2022, in the fram…

DivertorThermofluid-dynamicsNuclear Energy and EngineeringMechanical EngineeringGeneral Materials ScienceCFD analysisDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Analysis of steady state thermal-hydraulic behaviour of the DEMO Divertor cassette body cooling circuit

2017

Abstract Within the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. A comparative evaluation study has been performed considering the two different options under consideration for the divertor cassette body coolant, namely subcooled pressurized water and helium. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. CFD analy…

Finite volume methodSteady statebusiness.industryMechanical EngineeringNuclear engineeringDivertorComputational fluid dynamicsDEMO Divertor Cassette body CFD analysisThermofluid-dynamics7. Clean energy01 natural sciences010305 fluids & plasmasCoolantSubcoolingThermal hydraulicsMaterials Science(all)Nuclear Energy and Engineering0103 physical sciencesWater coolingEnvironmental scienceGeneral Materials Science010306 general physicsbusinessSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Preliminary design of the top cap of DEMO Water-Cooled Lithium Lead breeding blanket segments

2020

Abstract Within the framework of EUROfusion R&D activity, a research campaign has been carried out at the University of Palermo, in close cooperation with ENEA labs, in order to preliminary design the top cap foreseen for the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket segments. Due to the high heat and pressure loads acting on such component, its design results particularly demanding and a specific multi-physics approach is needed, covering several aspects from thermal-hydraulics to structural assessments. Preliminary detailed CAD model of the cap integrated into the upper region of the WCLL breeding blanket outboard central segment has been set-up, equipped with proper cooling …

Nuclear engineeringchemistry.chemical_elementBlanket7. Clean energy01 natural sciencesTop cap010305 fluids & plasmasLead (geology)Component (UML)0103 physical sciencesGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringElectronic circuitStructural materialMechanical EngineeringWater cooledCapWCLLNuclear Energy and EngineeringchemistryEnvironmental scienceMulti-physicsLithiumBreeding blanketFusion Engineering and Design
researchProduct

Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design

2021

Currently, for the EU DEMO, two Breeding Blankets (BBs) have been selected as potential candidates for the integration in the reactor. They are the Water Cooled Lithium Lead and the Helium Cooled Pebble Bed BB concepts. The two BB variants together with the associated ancillary systems drive the design of the overall plant. Therefore, a holistic investigation of integration issues derived by the BB and the installation of its ancillary systems has been performed. The issues related to the water activation due to the 16N and 17N isotopes and the impact on the primary heat transfer systems have been investigated providing guidelines and dedicated solution for the integration of safety devices…

TechnologyNuclear engineeringintegration issuesBreeding blanket; Integration issues; Water activation; Tritium management; VVPSSchemistry.chemical_elementIsolation valveSystem safetyBlanketTritium01 natural sciences010305 fluids & plasmasVVPSS0103 physical sciencesFusion reactors -- Design and constructionGeneral Materials Science010306 general physicswater activationSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural EngineeringIntegrated designbreeding blanket; integration issues; tritium management; VVPSS; water activationbreeding blanketMechanical EngineeringWater -- Thermal propertiesCoolanttritium managementNuclear Energy and EngineeringchemistryHeat transferEnvironmental scienceHelium -- Thermal propertiesPlant designddc:600Power-plants -- Design and construction
researchProduct

Assessment of DEMO WCLL breeding blanket primary heat transfer system isolation valve absorbed doses due to activated water

2020

Abstract Within the framework of the activities foreseen by the EUROfusion action on the cooling water activation assessment for a DEMO reactor equipped with a Water Cooled Lithium Lead Breeding Blanket (WCLL BB), the University of Palermo is involved in the investigation of the absorbed dose induced by the decay of nitrogen radioisotopes produced by water activation, in the main components (e.g. isolation valves) of both First Wall (FW) and Breeder Zone (BZ) cooling circuits. The aim of this work is to assess the spatial distribution of the absorbed dose in the DEMO Upper Pipe Chase (UPC), focusing the attention on the space neighbouring a typical isolation valve of the Primary Heat Transf…

PipingMechanical EngineeringWater cooledNuclear engineeringIsolation valveBlanket01 natural sciences010305 fluids & plasmasWCLL blanketBreeder (animal)Nuclear Energy and EngineeringDoseAbsorbed dose0103 physical sciencesHeat transferNeutronicsWater coolingEnvironmental scienceGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Hydraulic analysis of EU-DEMO divertor plasma facing components cooling circuit under nominal operating scenarios

2019

Within the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady state thermal-hydraulic behaviour of the DEMO divertor cassette cooling circuit, focussing the attention on its Plasma Facing Components (PFCs). The research campaign has been carried out following a theoretical-computational approach based on the Finite Volume Method and adopting the commercial Computational Fluid-Dynamic code ANSYS-CFX. A realistic model of the PFCs cooling circuit has been analysed, specifically embedding each Plasma Facing Unit (PFU) cooling chann…

Nuclear engineeringCFD analysis; DEMO; Divertor; Plasma facing components; Thermofluid-dynamics7. Clean energy01 natural sciences010305 fluids & plasmasDivertor0103 physical sciencesGeneral Materials ScienceBoundary value problemCFD analysiTotal pressure010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariPlasma facing componentsCivil and Structural EngineeringThermofluid-dynamicsFinite volume methodSteady stateTurbulenceMechanical EngineeringDivertorPlasma facing componentCoolantVibrationNuclear Energy and EngineeringEnvironmental scienceCFD analysisFusion Engineering and Design
researchProduct

Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

2015

Abstract The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach …

Pressure dropFinite volume methodSteady stateITER Blanket HydraulicsCritical heat fluxMechanical EngineeringMass flowNuclear engineeringBlanketCoolantNuclear Energy and EngineeringWater coolingEnvironmental scienceGeneral Materials ScienceSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Tokamak cooling systems and power conversion system options

2022

DEMO will be a fusion power plant demonstrating the integration into the grid architecture of an electric utility grid. The design of the power conversion chain is of particular importance, as it must adequately account for the specifics of nuclear fusion on the generation side and ensure compatibility with the electric utility grid at all times. One of the special challenges the foreseen pulsed operation, which affects the operation of the entire heat transport chain. This requires a time-dependant analysis of different concept design approaches to ensure proof of reliable operation and efficiency to obtain nuclear licensing. Several architectures of Balance of Plant were conceived and dev…

Balance of plantNuclear Energy and EngineeringDEMO; PHTS; balance of plant; HCPB; WCLLMechanical EngineeringHCPBPHTSGeneral Materials ScienceDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringWCLL
researchProduct

Hydraulic Analysis of the CDR Design of the ITER TBM Port Plug

2013

NUCLEAR FUSION TBM PORT PLUG THERMAL-HYDRAULICSSettore ING-IND/19 - Impianti Nucleari
researchProduct