0000000000744349

AUTHOR

Sissel Tind Sondergaard

Temperature Dependent Suns-V<inf>oc</inf> of Multicrystalline Silicon Solar Cells from Different Ingot Positions

This paper presents temperature dependent Suns- Voc measurements on multicrystalline silicon cells originating from different ingot positions. The effective lifetime is found to increase for all cells when the temperature is increased from 25°C to 6°C. However, cells from the top of the ingot show a considerably larger increas 40–50% for illumination conditions of 0.1-1 Sun, compared to an increase of 20-30% observed for cells from the bottom. The decrease in Voc with increasing temperature is found to be lower for cells from the top of the ingot compared to cells from the bottom. The temperature coefficient of the Voc is found to vary 5% along the ingot at 1 Sun, highlighting the influence…

research product

Experimental Investigation of the Optimal Ingot Resistivity for both the Cell Performances and the Temperature Coefficients for Different Cell Architectures.

Compensation engineering enables the achievement of lower ingot resistivities with relatively constant performances along the ingot height. In this paper the impact of the bulk resistivity on the cell performances and the temperature coefficients is investigated for compensated and non-compensated multicrystalline silicon. Based on experimental data we show that reducing the bulk resistivity below a certain value improves the temperature coefficients but deteriorates the cell performances for two distinct cell architectures (AI-BSF and PERCT). Moreover this performance loss is not balanced out by the improved temperature coefficient for operating conditions below 70°C.

research product

Minority Carrier Lifetime Variations in Multicrystalline Silicon Wafers with Temperature and Ingot Position

The minority carrier lifetimes of multicrystalline silicon wafers are mapped using microwave photoconductive decay for different temperatures and ingot positions. Wafers from the top of the ingot display larger areas with lower lifetimes compared to wafers from the bottom. The lifetimes of low-lifetime areas are found to increase with the temperature, while the lifetimes of some high-lifetime areas decrease or remain unchanged. The relative improvement of the low-lifetime areas is considerably larger than the relative change in the high-lifetime areas. We suggest that the above-mentioned observations explain, at least partially, why previous studies have found the relative temperature coeff…

research product