0000000000744441
AUTHOR
Raqueline A. M. Santos
Adjacent Vertices Can Be Hard to Find by Quantum Walks
Quantum walks have been useful for designing quantum algorithms that outperform their classical versions for a variety of search problems. Most of the papers, however, consider a search space containing a single marked element only. We show that if the search space contains more than one marked element, their placement may drastically affect the performance of the search. More specifically, we study search by quantum walks on general graphs and show a wide class of configurations of marked vertices, for which search by quantum walk needs \(\varOmega (N)\) steps, that is, it has no speed-up over the classical exhaustive search. The demonstrated configurations occur for certain placements of …
On the probability of finding marked connected components using quantum walks
Finding a marked vertex in a graph can be a complicated task when using quantum walks. Recent results show that for two or more adjacent marked vertices search by quantum walk with Grover's coin may have no speed-up over classical exhaustive search. In this paper, we analyze the probability of finding a marked vertex for a set of connected components of marked vertices. We prove two upper bounds on the probability of finding a marked vertex and sketch further research directions.
Adjacent vertices can be hard to find by quantum walks
Quantum walks have been useful for designing quantum algorithms that outperform their classical versions for a variety of search problems. Most of the papers, however, consider a search space containing a single marked element only. We show that if the search space contains more than one marked element, their placement may drastically affect the performance of the search. More specifically, we study search by quantum walks on general graphs and show a wide class of configurations of marked vertices, for which search by quantum walk needs $\Omega(N)$ steps, that is, it has no speed-up over the classical exhaustive search. The demonstrated configurations occur for certain placements of two or…
Exceptional Quantum Walk Search on the Cycle
Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk's hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk's random sampling yields an arbitrary speedup in query complexity over the classical random walk's hitting time. In this context, however, the mixing time to prepare the initial uniform state…
Adjacent vertices can be hard to find by quantum walks
Quantum walks have been useful for designing quantum algorithms that outperform their classical versions for a variety of search problems. Most of the papers, however, consider a search space containing a single marked element. We show that if the search space contains more than one marked element, their placement may drastically affect the performance of the search. More specifically, we study search by quantum walks on general graphs and show a wide class of configurations of marked vertices, for which search by quantum walk needs Ω(N) steps, that is, it has no speed-up over the classical exhaustive search. The demonstrated configurations occur for certain placements of two or more adjace…