0000000000744801

AUTHOR

D. Camacho

The structural properties of GaN/AlN core-shell nanocolumn heterostructures.

International audience; The growth and structural properties of GaN/AlN core-shell nanowire heterostructures have been studied using a combination of resonant x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy experiments. For a GaN core of 20 nm diameter on average surrounded by a homogeneous AlN shell, the built-in strain in GaN is found to agree with theoretical calculations performed using a valence force field model. It is then concluded that for an AlN thickness up to at least 12 nm both core and shell are in elastic equilibrium. However, in the case of an inhomogeneous growth of the AlN shell caused by the presence of steps on the sides of the …

research product

Growth, structural and optical properties of GaN/AlN and GaN/GaInN nanowire heterostructures

Abstract After discussing the GaN NW nucleation issue, we will present the structural properties of axial and radial (i.e. core/shell) GaN/AlN NW heterostructures and adress the issue of critical thickness during the growth of such heterostructures. Next, we will present the growth of InGaN NWs on a GaN NW base. It will be shown that the morphology and structural properties of the InGaN NW sections depend on the In content: for high In content a flat top is observed and plastic relaxation is occuring, with mismatch dislocations formed at the InGaN/GaN interface. By contrast, for In content below 25% InGaN NWs exhibit a pencil-like shape assigned to a purely elastic strain relaxation process…

research product

The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures.

The strain state of 1 and 2.5 nm thick GaN insertions in GaN/AlN nanocolumn heterostructures has been studied by means of a combination of high resolution transmission electron microscopy, Raman spectroscopy and theoretical modeling. It is found that 2.5 nm thick GaN insertions are partially relaxed, which has been attributed to the presence of dislocations in the external AlN capping layer, in close relationship with the morphology of GaN insertions and with the AlN capping mechanism. The observed plastic relaxation in AlN is consistent with the small critical thickness expected for GaN/AlN radial heterostructures.

research product