0000000000747721

AUTHOR

Jukka Aumanen

Patterning and tuning of electrical and optical properties of graphene by laser induced two-photon oxidation

Graphene, being an ultrathin, durable, flexible, transparent material with superior conductivity and unusual optical properties, promises many novel applications in electronics, photonics and optoelectronics. For applications in electronics, patterning and modification of electrical properties is very desirable since pristine graphene has no band gap. Here we demonstrate a simple all-optical patterning method for graphene, based on laser induced two-photon oxidation. By tuning the intensity of irradiation and the number of pulses the level of oxidation can be controlled to high precision and, therefore, a band gap can be introduced and electrical and optical properties can be continuously t…

research product

Nonlinear photo-oxidation of graphene and carbon nanotubes probed by four wave mixing imaging and spectroscopy (Presentation Recording)

Graphene has high potential for becoming the next generation material for electronics, photonics and optoelectronics. However, spatially controlled modification of graphene is required for applications. Here, we report patterning and controlled tuning of electrical and optical properties of graphene by laser induced non-linear oxidation. We use four wave mixing (FWM) as a key method for imaging graphene and graphene oxide patterns with high sensitivity. FWM produces strong signal in monolayer graphene and the signal is highly sensitive to oxidation providing good contrast between patterned and non-patterned areas. We have also performed photo-oxidation and FWM imaging for air suspended carb…

research product

Local photo-oxidation of individual single walled carbon nanotubes probed by femtosecond four wave mixing imaging

Photo-oxidation of individual, air-suspended single walled carbon nanotubes (SWCNTs) is studied by femtosecond laser spectroscopy and imaging. Individual SWCNTs are imaged by four wave mixing (FWM) microscopy under an inert gas (Ar or N2) atmosphere. When imaging is performed in an ambient air atmosphere, the decay of the FWM signal takes place. Electron microscopy shows that SWCNTs are not destroyed and the process is attributed to photoinduced oxidation reactions which proceed via a non-linear excitation mechanism, when irradiation is performed with ∼30 fs pulses in the visible spectral region (500-600 nm). Photo-oxidation can be localized in specific regions of SWCNTs within optical reso…

research product

Chemical composition of two-photon oxidized graphene

Chemical composition of two-photon oxidized single-layer graphene is studied by micrometer X-ray photoelectron spectroscopy (XPS). Oxidized areas with a size of 2 × 2 μm2 are patterned on graphene by tightly focused femtosecond pulsed irradiation under air atmosphere. The degree of oxidation is controlled by varying the irradiation time. The samples are characterized by four wave mixing (FWM) imaging and Raman spectroscopy/imaging. Micrometer-XPS is used to study local chemical composition of oxidized areas. XPS imaging shows good contrast between oxidized and non-oxidized areas. Gradual oxidation is observed from growth of signals attributed mainly to hydroxyl (Csingle bondOH) and epoxide …

research product

The effect of temperature on the internal dynamics of dansylated POPAM dendrimers

The internal and rotational dynamics of the dansylated poly(propylene amine) dendrimers (POPAM) have been studied by time correlated single photon counting (TCSPC) and molecular dynamics (MD) simulations. The hydrodynamic volumes of the dendrimer generations from G1 to G4 were estimated by fluorescence anisotropy data. Experiments and simulations suggest that the volume and the shape of the dendrimers are temperature dependent. At low temperatures the dendrimer structure becomes more spacious and rigid and back-folding of the individual branches is slowed down. For the G3 and G4 generations the temperature effects are much stronger than for the smaller G1 and G2 generations, where back-fold…

research product

Revealing lattice disorder, oxygen incorporation and pore formation in laser induced two-photon oxidized graphene

Abstract Laser induced two-photon oxidation has proven to be a reliable method to pattern and control the level of oxidation of single layer graphene, which in turn allows the development of graphene-based electronic and optoelectronic devices with an all-optical method. Here we provide a full structural and chemical description of modifications of air-suspended graphene during the oxidation process. By using different laser irradiation doses, we were able to show via transmission electron microscopy, electron energy loss spectroscopy, electron diffraction and Raman spectroscopy how graphene develops from its pristine form up to a completely oxidized, porous and amorphous carbon layer. Furt…

research product

Time-resolved coherent anti-Stokes Raman-scattering measurements of I2 in solid Kr: vibrational dephasing on the ground electronic state at 2.6-32 K.

Time-resolved coherent anti-Stokes Raman-scattering (CARS) measurements are carried out for iodine (I2) in solid krypton matrices. The dependence of vibrational dephasing time on temperature and vibrational quantum number v is studied. The v dependence is approximately quadratic, while the temperature dependence of both vibrational dephasing and spectral shift, although weak, fits the exponential form characteristic of dephasing by pseudolocal phonons. The analysis of the data indicates that the frequency of the pseudolocal phonons is approximately 30 cm(-1). The longest dephasing times are observed for v = 2 being approximately 300 ps and limited by inhomogeneous broadening. An increase in…

research product

Time resolved CARS measurements of I2 in solid Kr

Dephasing is a central concept in condensed phase spectroscopy. It determines how long a system will maintain its coherence. The dephasing time of a system is determined by dynamic intermolecular interactions, and therefore measurements of dephasing time can provide information on interactions and couplings between a molecule and its environment. This chapter illustrates the application of the femtosecond coherent anti-Stokes Raman scattering (CARS) method to investigate the vibrational dephasing of I 2 in solid krypton. Dephasing of vibrational states between v = 2 and v = 16 is studied in the temperature range T = 2.6–32 K. The low vibrational states show dephasing times on the order of a…

research product

Real-time monitoring of graphene patterning with wide-field four-wave mixing microscopy

The single atom thick two-dimensional graphene is a promising material for various applications due to its extraordinary electronic, optical, optoelectronic, and mechanical properties. The demand for developing graphene based applications has entailed a requirement for development of methods for fast imaging techniques for graphene. Here, we demonstrate imaging of graphene with femtosecond wide-field four-wave mixing microscopy. The method provides a sensitive, non-destructive approach for rapid large area characterization of graphene. We show that the method is suitable for online following of a laser patterning process of microscale structures on single-layer graphene. peerReviewed

research product

From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation

The mechanism of two-photon induced oxidation of single-layer graphene on Si/SiO2 substrates is studied by atomic force microscopy (AFM) and Raman microspectroscopy and imaging. AFM imaging of areas oxidized by using a tightly focused femtosecond laser beam shows that oxidation is not homogeneous but oxidized and nonoxidized graphene segregate into separate domains over the whole irradiated area. The oxidation process starts from point-like “seeds” which grow into islands finally coalescing together. The size of islands before coalescence is 30–40 nm, and the density of the islands is on the order of 1011 cm–2. Raman spectroscopy reveals growth of the D/G band ratio along the oxidation. Sha…

research product

Ultrafast Dynamics of Dansylated POPAM Dendrimers and Energy Transfer in their Dye Complexes

We have studied internal dynamics of dansylated poly(propyleneamine) dendrimers of different generations in solution and excitation energy transfer from dansyl chromophores to xanthene dyes that form van der Waals complexes with the dendrimers

research product

Reduction-oxidation dynamics of oxidized graphene: Functional group composition dependent path to reduction

Micrometer-sized oxidation patterns containing varying composition of functional groups including epoxy, ether, hydroxyl, carbonyl, carboxyl, were created in chemical vapor deposition grown graphene through scanning probe lithography and pulsed laser two-photon oxidation. The oxidized graphene films were then reduced by a focused x-ray beam. Through in-situ x-ray photoelectron spectroscopy measurement, we found that the path to complete reduction depends critically on the total oxygen coverage and concentration of epoxy and ether groups. Over the threshold concentrations, a complex reduction-oxidation process involving conversion of functional groups of lower binding energy to higher bindin…

research product

Ultrafast energy transfer in dansylated POPAM–eosin complexes

Abstract Excitation energy transfer (EET) in dendritic host–guest complexes has been studied. Three generations G2, G3 and G4 of dansyl substituted poly(propyleneamine) dendrimers (POPAM) were complexed with a fluorescent dye eosin in chloroform solution. Arrival of excitation from dansyls to eosin was monitored by femtosecond transient absorption spectroscopy. EET rates from the dansyls to eosin(s) are characterised by two time constants 1 ps and 6 ps independent of dendrimer generation. Relaxation processes in eosin were clearly faster when complexed with dendrimer than in solution. As several eosins are bound to G3 and G4 dendrimers, besides host–guest interaction, also eosin–eosin inter…

research product

Transient Midinfrared Study of Light Induced Dissociation Reaction of Ru(dcbpy)(CO)2I2 in Solution

Illumination of Ru(dcbpy)I2(CO)2 (dcbpy = 4,4‘-dicarboxy-2,2‘-bipyridine) with (near) ultraviolet light induces dissociation of one of the CO groups of the complex. In solution the opened coordination site of the metal is occupied by a solvent molecule. In the present study the kinetics of the ligand exchange reaction has been studied in solution with femtosecond time resolution by probing the CO stretching vibrations of the reactant and the product molecules Ru(dcbpy)I2(CO)(EtOH) in the infrared and probing electronic transitions in the visible spectral regions. The kinetic results indicate that photoelimination of the CO group occurs on a subpicosecond time scale. The overall quantum yiel…

research product

Characterization of used mineral oil condition by spectroscopic techniques

Optical absorption, fluorescence, and quantitative 13C NMR spectroscopy have been used to study the degradation of mineral gearbox oil. Samples of used oil were collected from field service. Measured absorption, fluorescence, and quantitative 13C NMR spectra of used oils show characteristic changes from the spectra of a fresh oil sample. A clearly observable, approximately 20-nm blueshift of the fluorescence emission occurs during the early stages of oil use and correlates with changes in intensity of some specific 13C NMR resonance lines. These changes correlate with oil age because of the connection between the blueshift and breaking of the larger conjugated hydrocarbons of oil as a resul…

research product

From Seeds to Islands: Growth of Oxidized Graphene by Two-Photon Oxidation

The mechanism of two-photon induced oxidation of single-layer graphene on Si/SiO2 substrates is studied by atomic force microscopy (AFM) and Raman microspectroscopy and imaging. AFM imaging of areas oxidized by using a tightly focused femtosecond laser beam shows that oxidation is not homogeneous but oxidized and nonoxidized graphene segregate into separate domains over the whole irradiated area. The oxidation process starts from point-like “seeds” which grow into islands finally coalescing together. The size of islands before coalescence is 30–40 nm, and the density of the islands is on the order of 1011 cm–2. Raman spectroscopy reveals growth of the D/G band ratio along the oxidation. Sha…

research product

Internal dynamics and energy transfer in dansylated POPAM dendrimers and their eosin complexes.

Internal dynamics of dansylated poly(propyleneamine) dendrimers (POPAM, G1-G4) in solution and excitation energy transfer from dansyls to eosin in POPAM-eosin complexes have been studied by time-resolved fluorescence spectroscopy and molecular dynamics (MD) simulations. Combining the results from fluorescence anisotropy and the MD simulation studies suggests three time domains for the internal dynamics of the G3 and G4 generations, about 60 ps for motions of the outer-sphere dansyls, 500-1000 ps for restricted motions of back-folded dansyls, and 1500-2600 ps for the overall rotation. For the smaller generations, the contribution from the restricted motions was not entirely evident. Eosin bi…

research product

Energy transfer to xanthene dyes in dansylated POPAM dendrimers

Abstract Excitation energy transfer (EET) in host–guest complexes of dansylated POPAM dendrimers and xanthene dyes have been studied by transient absorption spectroscopy. EET from dansyl periphery to guests: rose bengal, eosin, or fluorescein, showed non-exponential behaviour as a result of distribution of donor–acceptor distances. Time constants range from 100 fs to 8 ps, independent of the dye and the dendrimer generation. Experiments suggested that in dendrimers binding more than one guest, EET among the guests becomes effective. Guest–host and guest–guest interactions induce non-radiative relaxation channels making excitation decays of the guests clearly faster in complexes than in solu…

research product

Revealing lattice disorder, oxygen incorporation and pore formation in laser induced two-photon oxidized graphene

Laser induced two-photon oxidation has proven to be a reliable method to pattern and control the level of oxidation of single layer graphene, which in turn allows the development of graphene-based electronic and optoelectronic devices with an all-optical method. Here we provide a full structural and chemical description of modifications of air-suspended graphene during the oxidation process. By using different laser irradiation doses, we were able to show via transmission electron microscopy, electron energy loss spectroscopy, electron diffraction and Raman spectroscopy how graphene develops from its pristine form up to a completely oxidized, porous and amorphous carbon layer. Furthermore, …

research product

Optical Forging of Graphene into Three-Dimensional Shapes

Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory. peerReviewed

research product