0000000000749565

AUTHOR

Bernardo Felzenszwalb

showing 2 related works from this author

Periodic and Nil Polynomials in Rings

1980

Let R be an associative ring and f(x1,…, xd) a polynomial in noncommuting variables. We say that f is periodic or nil in R if for all r1,…, rd ∈ R we have that f(r1,…, rd) is periodic, respectively nilpotent (recall that a ∈ R is periodic if for some integer ).

CombinatoricsNilpotentRing (mathematics)PolynomialIntegerGeneral Mathematics010102 general mathematics0101 mathematics01 natural sciencesAssociative propertyMathematicsCanadian Mathematical Bulletin
researchProduct

Centralizers and Multilinear Polynomials in Non-Commutative Rings

1979

Multilinear mapPure mathematicsGeneral MathematicsCommutative ringMathematicsJournal of the London Mathematical Society
researchProduct