6533b82ffe1ef96bd1295a95

RESEARCH PRODUCT

Periodic and Nil Polynomials in Rings

Antonino GiambrunoBernardo Felzenszwalb

subject

CombinatoricsNilpotentRing (mathematics)PolynomialIntegerGeneral Mathematics010102 general mathematics0101 mathematics01 natural sciencesAssociative propertyMathematics

description

Let R be an associative ring and f(x1,…, xd) a polynomial in noncommuting variables. We say that f is periodic or nil in R if for all r1,…, rd ∈ R we have that f(r1,…, rd) is periodic, respectively nilpotent (recall that a ∈ R is periodic if for some integer ).

https://doi.org/10.4153/cmb-1980-072-5