6533b82ffe1ef96bd1295a95
RESEARCH PRODUCT
Periodic and Nil Polynomials in Rings
Antonino GiambrunoBernardo Felzenszwalbsubject
CombinatoricsNilpotentRing (mathematics)PolynomialIntegerGeneral Mathematics010102 general mathematics0101 mathematics01 natural sciencesAssociative propertyMathematicsdescription
Let R be an associative ring and f(x1,…, xd) a polynomial in noncommuting variables. We say that f is periodic or nil in R if for all r1,…, rd ∈ R we have that f(r1,…, rd) is periodic, respectively nilpotent (recall that a ∈ R is periodic if for some integer ).
year | journal | country | edition | language |
---|---|---|---|---|
1980-12-01 | Canadian Mathematical Bulletin |