0000000000750086

AUTHOR

Philippe Chavrier

0000-0002-7351-733x

showing 3 related works from this author

Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion

2021

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the …

SenescenceExonucleaseDNA damageNuclear Envelope[SDV]Life Sciences [q-bio]Breast NeoplasmsBiologySettore MED/08 - Anatomia PatologicaGeneral Biochemistry Genetics and Molecular BiologyCell LineMicemedicineSettore MED/05 - Patologia ClinicaAnimalsHumansNeoplasm InvasivenessEpithelial–mesenchymal transitionCellular SenescenceEndoplasmic reticulumPhosphoproteinsXenograft Model Antitumor AssaysCell biology[SDV] Life Sciences [q-bio]medicine.anatomical_structureExodeoxyribonucleasesCancer cellProteolysisbiology.proteinTREX1 nuclear envelope rupture DNA damage mammary duct carcinoma tumor invasion senescence breast cancer cGAS confinement epithelial to mesenchymal transition Animals Breast Neoplasms Cell Line Cellular Senescence Collagen Disease Progression Exodeoxyribonucleases Female Humans Mice Neoplasm InvasivenessNuclear Envelope PhosphoproteinsProteolysis Xenograft Model Antitumor Assays DNA DamageDisease ProgressionFemaleCollagenNucleusExtracellular Matrix DegradationDNA Damage
researchProduct

Compromised nuclear envelope integrity drives tumor cell invasion

2020

AbstractWhile mutations leading to a fragile envelope of the cell nucleus are well known to cause diseases such as muscular dystrophies or accelerated aging, the pathophysiological consequences of the recently discovered mechanically induced nuclear envelope ruptures in cells harboring no mutation are less known. Here we show that repeated loss of nuclear envelope integrity in nuclei experiencing mechanical constraints promotes senescence in nontransformed cells, and induces an invasive phenotype including increased collagen degradation in human breast cancer cells, both in vitro and in a mouse xenograft model of breast cancer progression. We show that these phenotypic changes are due to th…

SenescenceCell nucleusMutationmedicine.anatomical_structureCytoplasmChemistryDNA damageCancer cellmedicinemedicine.disease_causePhenotypeExtracellular Matrix DegradationCell biology
researchProduct

Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation

1996

Lethal toxin (LT) from Clostridium sordellii is one of the high molecular mass clostridial cytotoxins. On cultured cells, it causes a rounding of cell bodies and a disruption of actin stress fibers. We demonstrate that LT is a glucosyltransferase that uses UDP-Glc as a cofactor to covalently modify 21-kDa proteins both in vitro and in vivo. LT glucosylates Ras, Rap, and Rac. In Ras, threonine at position 35 was identified as the target amino acid glucosylated by LT. Other related members of the Ras GTPase superfamily, including RhoA, Cdc42, and Rab6, were not modified by LT. Incubation of serum-starved Swiss 3T3 cells with LT prevents the epidermal growth factor-induced phosphorylation of m…

ThreonineUridine Diphosphate GlucoseRHOABacterial ToxinsMolecular Sequence DataClostridium sordelliimacromolecular substancesCDC42GTPaseBiologyCell morphologyBiochemistryGTP PhosphohydrolasesProto-Oncogene Proteins p21(ras)MiceGTP-binding protein regulatorsGTP-Binding ProteinsAnimalsHumansAmino Acid SequenceMolecular BiologyClostridiumEpidermal Growth FactorKinase3T3 CellsCell Biologybiology.organism_classificationMolecular biologyActinsrac GTP-Binding ProteinsActin CytoskeletonKineticsGlucoserap GTP-Binding ProteinsGlucosyltransferasesCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinPhosphorylationGuanosine TriphosphateHeLa CellsJournal of Biological Chemistry
researchProduct