6533b85ffe1ef96bd12c1d6a

RESEARCH PRODUCT

Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation

Esteban Chaves-olarteGilles FlatauPatrice BoquetPatrice BoquetM GiryDidier CussacBruno AntonnyMichel R. PopoffChristoph Von Eichel-streiberPierre ChardinPhilippe ChavrierEmmanuel LemichezEmmanuel LemichezMonica ThelestamJean De Gunzburg

subject

ThreonineUridine Diphosphate GlucoseRHOABacterial ToxinsMolecular Sequence DataClostridium sordelliimacromolecular substancesCDC42GTPaseBiologyCell morphologyBiochemistryGTP PhosphohydrolasesProto-Oncogene Proteins p21(ras)MiceGTP-binding protein regulatorsGTP-Binding ProteinsAnimalsHumansAmino Acid SequenceMolecular BiologyClostridiumEpidermal Growth FactorKinase3T3 CellsCell Biologybiology.organism_classificationMolecular biologyActinsrac GTP-Binding ProteinsActin CytoskeletonKineticsGlucoserap GTP-Binding ProteinsGlucosyltransferasesCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinPhosphorylationGuanosine TriphosphateHeLa Cells

description

Lethal toxin (LT) from Clostridium sordellii is one of the high molecular mass clostridial cytotoxins. On cultured cells, it causes a rounding of cell bodies and a disruption of actin stress fibers. We demonstrate that LT is a glucosyltransferase that uses UDP-Glc as a cofactor to covalently modify 21-kDa proteins both in vitro and in vivo. LT glucosylates Ras, Rap, and Rac. In Ras, threonine at position 35 was identified as the target amino acid glucosylated by LT. Other related members of the Ras GTPase superfamily, including RhoA, Cdc42, and Rab6, were not modified by LT. Incubation of serum-starved Swiss 3T3 cells with LT prevents the epidermal growth factor-induced phosphorylation of mitogen-activated protein kinases ERK1 and ERK2, indicating that the toxin blocks Ras function in vivo. We also demonstrate that LT acts inside the cell and that the glucosylation reaction is required to observe its dramatic effect on cell morphology. LT is thus a powerful tool to inhibit Ras function in vivo.

https://doi.org/10.1074/jbc.271.17.10217