0000000000041446
AUTHOR
Christoph Von Eichel-streiber
GTPases of the Rho Subfamily Are Required for Brucella abortus Internalization in Nonprofessional Phagocytes
Members of the genus Brucella are intracellular -Proteobacteria responsible for brucellosis, a chronic disease of humans and animals. Little is known about Brucella virulence mechanisms, but the abilities of these bacteria to invade and to survive within cells are decisive factors for causing disease. Transmission electron and fluorescence microscopy of infected nonprofessional phagocytic HeLa cells revealed minor membrane changes accompanied by discrete recruitment of F-actin at the site of Brucella abortus entry. Cell uptake of B. abortus was negatively affected to various degrees by actin, actin-myosin, and microtubule chemical inhibitors. Modulators of MAPKs and protein-tyrosine kinases…
A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins.
Abstract The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between “reference” TcdB-10463 andClostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-R…
Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile.
To analyse the transcription pattern of the five tcdA-E genes of the pathogenicity locus (PaLoc) of Clostridium difficile a protocol was established to purify RNA from strain VPI10463. Transcription analysis of the five tcdA-E genes showed that they were all transcribed. In the early exponential phase, a high level of tcdC and low levels of tcdA,B,D,E transcripts were detectable; this was inverted in the stationary phase, suggesting that TcdC might have a negative influence on transcription of the other genes. Three transcription initiation sites, one for tcdA and two for tcdB were determined by primer extension analysis. Readthrough transcripts from outside the locus were not obtainable, s…
Morphological changes in adherent cells induced by Clostridium difficile toxins.
Cellular UDP-Glucose Deficiency Caused by a Single Point Mutation in the UDP-Glucose Pyrophosphorylase Gene
We previously isolated a mutant cell that is the only mammalian cell reported to have a persistently low level of UDP-glucose. In this work we obtained a spontaneous revertant whose UDP-glucose level lies between those found in the wild type and the mutant cell. The activity of UDP-glucose pyrophosphorylase (UDPG:PP), the enzyme that catalyzes the formation of UDP-glucose, was in the mutant 4% and in the revertant 56% of the activity found in the wild type cell. Sequence analysis of UDPG: PP cDNAs from the mutant cell showed one missense mutation, which changes amino acid residue 115 from glycine to aspartic acid. The substituted glycine is located within the largest stretch of strictly con…
Inhibition of FcεRI-mediated Activation of Rat Basophilic Leukemia Cells by Clostridium difficile Toxin B (Monoglucosyltransferase)
Abstract Treatment of rat basophilic leukemia (RBL) 2H3-hm1 cells with Clostridium difficile toxin B (2 ng/ml), which reportedly depolymerizes the actin cytoskeleton, blocked [3H]serotonin release induced by 2,4-dinitrophenyl-bovine serum albumin, carbachol, mastoparan, and reduced ionophore A23187-stimulated degranulation by about 55-60%. In lysates of RBL cells, toxin B 14C-glucosylated two major and one minor protein. By using two-dimensional gel electrophoresis and immunoblotting, RhoA and Cdc42 were identified as protein substrates of toxin B. In contrast to toxin B, Clostridium botulinum transferase C3 that selectively inactivates RhoA by ADP-ribosylation did not inhibit degranulation…
Metabotropic glutamate receptors activate phospholipase D in astrocytes through a protein kinase C-dependent and Rho-independent pathway.
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors that mediate phospholipase D (PLD) activation in brain, but the mechanism underlying this response remains unclear. Here we used primary cultures of astrocytes as a cell model to explore the mechanism that links mGluRs to PLD. Glutamate activated both phospholipase C (PLC) and PLD with equal potency and this effect was mimicked by L-cysteinesulfinic acid, a putative neurotransmitter previously shown to activate mGluRs coupled to PLD, but not PLC, in adult brain. PLD activation by glutamate was dependent on Ca(2+) mobilization and fully blocked by both protein kinase C (PKC) inhibitors and PKC down-regulation, suggesti…
Activation of NF-kappaB and IL-8 by yersinia enterocolitica invasin protein is conferred by engagement of rac1 and MAP kinase cascades.
International audience; Yersinia enterocolitica triggers activation of the nuclear factor (NF)-kappaB and production of the proinflammatory chemokine interleukin (IL)-8 in intestinal epithelial cells. This activation is due to adhesion of the bacteria via their outer membrane protein invasin to the host cells. Using Clostridium difficile toxins that specifically inactivate small GTPases, and transfection of inhibitory proteins of the Rho-GTPases, we demonstrate that Rac1, but not Cdc42 or Rho, is required for activation of NF-kappaB by invasin. Invasin activated the mitogen activated protein kinases (MAPK) p38 and c-Jun N-terminal protein kinase (JNK) but not extracellular signal regulated …
The actin-based motility of intracellularListeria monocytogenesis not controlled by small GTP-binding proteins of the Rho- and Ras-subfamilies
In this study, we analyzed whether the actin-based motility of intracellular Listeria monocytogenes is controlled by the small GTP-binding proteins of the Rho- and Ras-subfamilies. These signalling proteins are key regulatory elements in the control of actin dynamics and their activity is essential for the maintenance of most cellular microfilament structures. We used the Clostridium difficile toxins TcdB-10463 and TcdB-1470 to specifically inactivate these GTP-binding proteins. Treatment of eukaryotic cells with either of these toxins led to a dramatic breakdown of the normal actin cytoskeleton, but did not abrogate the invasion of epithelial cells by L. monocytogenes and had no effect on …
Rac1 and PAK1 are upstream of IKK-ε and TBK-1 in the viral activation of interferon regulatory factor-3
The anti-viral type I interferon (IFN) response is initiated by the immediate induction of IFN beta, which is mainly controlled by the IFN-regulatory factor-3 (IRF-3). The signaling pathways mediating viral IRF-3 activation are only poorly defined. We show that the Rho GTPase Rac1 is activated upon virus infection and controls IRF-3 phosphorylation and activity. Inhibition of Rac1 leads to reduced IFN beta promoter activity and to enhanced virus production. As a downstream mediator of Rac signaling towards IRF-3, we have identified the kinase p21-activated kinase (PAK1). Furthermore, both Rac1 and PAK1 regulate the recently described IRF-3 activators, I kappa B kinase- and TANK-binding kina…
Induction of antitoxin responses in Clostridium-difficile-infected patients compared to healthy blood donors
According to the literature Clostridium difficile antitoxins are present in up to 66% of humans. In a survey of ∼400 plasma samples from healthy blood donors we found that less than 6% were positive for anti-TcdA or anti-TcdB antitoxins. Using the same standard immunoassay protocol, we looked for IgG and IgA antitoxins in the blood and stool samples from 25 patients with C. difficile infection (CDI). Some patients with CDI had no antitoxin detected at all, while others had high levels of specific IgG- and IgA-antitoxins against both TcdA and TcdB in blood and IgA-anti-TcdA and -anti-TcdB antibodies in stool. Systemic responses to TcdB and mucosal responses to TcdA predominated. Among patien…
UDP-glucose deficiency in a mutant cell line protects against glucosyltransferase toxins from Clostridium difficile and Clostridium sordellii.
Abstract We have previously isolated a fibroblast mutant cell with high resistance to the two Rho-modifying glucosyltransferase toxins A and B of Clostridium difficile. We demonstrate here a low level of UDP-glucose in the mutant, which explains its toxin resistance since: (i) to obtain a detectable toxin B-mediated Rho modification in lysates of mutant cells, addition of UDP-glucose was required, and it promoted the Rho modification dose-dependently; (ii) high pressure liquid chromatography analysis of nucleotide extracts of cells indicated that the level of UDP-glucose in the mutant (0.8 nmol/106 cells) was lower than in the wild type (3.7 nmol/106 cells); and (iii) sensitivity to toxin B…
Autocatalytic cleavage of Clostridium difficile toxin B.
Clostridium difficile, the causative agent of nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis, possesses two main virulence factors: the large clostridial cytotoxins A and B. It has been proposed that toxin B is cleaved by a cytosolic factor of the eukaryotic target cell during its cellular uptake. Here we report that cleavage of not only toxin B, but also all other large clostridial cytotoxins, is an autocatalytic process dependent on host cytosolic inositolphosphate cofactors. A covalent inhibitor of aspartate proteases, 1,2-epoxy-3-(p-nitrophenoxy)propane, completely blocked toxin B function on cultured cells and was used to identify its catalytically active prote…
Large clostridial cytotoxins — a family of glycosyltransferases modifying small GTP-binding proteins
Some Clostridium species produce AB x -type protein cytotoxins of high molecular weight. These toxins constitute the group of large clostridial cytotoxins (LCTs), which have homologous protein sequences, exert glycosyltransferase activity and modify GTP-binding proteins of the Ras-superfamily. These characteristics render the LCTs valuable tools for developmental and cell biologists.
Sequencing and analysis of the gene encoding the α-toxin of Clostridium novyi proves its homology to toxins A and B of Clostridium difficile
A library of total Clostridium novyi DNA was established and screened for the alpha-toxin gene (tcn alpha) by hybridization with oligonucleotides derived from a partial N-terminal sequence and by using specific antisera. Overlapping subgenic tcn alpha fragments were isolated and subsequently the total sequence of tcn alpha was determined. The 6534 nucleotide open reading frame encodes a polypeptide of M(r) 250,166 and pI 5.9. The N-terminal alpha-toxin (Tcn alpha) sequence MLITREQLMKIASIP determined by Edman degradation confirmed the identity of the reading frame and the assignment of the translation start point. The toxin is not modified posttranslationally at its N-terminus nor does it co…
Rho protein inactivation induced apoptosis of cultured human endothelial cells.
Small GTP-binding Rho GTPases regulate important signaling pathways in endothelial cells, but little is known about their role in endothelial cell apoptosis. Clostridial cytotoxins specifically inactivate GTPases by glucosylation [ Clostridium difficile toxin B-10463 (TcdB-10463), C. difficile toxin B-1470 (TcdB-1470)] or ADP ribosylation ( C. botulinum C3 toxin). Exposure of human umbilical cord vein endothelial cells (HUVEC) to TcdB-10463, which inhibits RhoA/Rac1/Cdc42, or to C3 toxin, which inhibits RhoA, -B, -C, resulted in apoptosis, whereas inactivation of Rac1/Cdc42 with TcdB-1470 was without effect, suggesting that Rho inhibition was responsible for endothelial apoptosis. Disruptio…
Rho protein inhibition blocks protein kinase C translocation and activation.
Small GTP-binding proteins of the Ras and Rho family participate in various important signalling pathways. Large clostridial cytotoxins inactivate GTPases by UDP-glucosylation. Using Clostridium difficile toxin B-10463 (TcdB) for inactivation of Rho proteins (RhoA/Rac/Cdc42) and Clostridium sordellii lethal toxin-1522 (TcsL) for inactivation of Ras-proteins (Ras/Rac/Ral, Rap) the role of these GTPases in protein kinase C (PKC) stimulation was studied. Phorbol-myristate-acetate (PMA) induced a rapid PKC translocation to and activation in the particulate cell fraction as determined by PKC-activity measurements and Western blots for PKC alpha. These effects were blocked by TcdB inhibiting Rho …
Purification and evaluation of large clostridial cytotoxins that inhibit small GTPases of Rho and ras subfamilies
Publisher Summary This chapter discusses the purification and evaluation of large clostridia cytotoxins (LCTs) that inhibit small guanosine 5'-triphosphates (GTPases) of Rho and Ras subfamilies. LCTs are glycosyltransferases that inactivate GTPases of the Rho and Ras subfamilies by covalently coupling a sugar moiety (mostly glucose) to the conserved threonine residue in region switch 1 of the GTPases (T35 in Ras). This glycosylation functionally inactivates the GTPases leading to the collapse of the actin cytoskeleton and ultimately induces apoptosis of the cells. Small GTP-binding proteins are key players in the regulation of signal transducing networks of eukaryotic cells. Their regulator…
A comparative biochemical, pharmacological and immunological study of Clostridium novyi alpha-toxin, C. difficile toxin B and C. sordellii lethal toxin.
The three clostridial cytotoxins, i.e. alpha-toxin of C. novyi (Tox alpha-nov), toxin B of C. difficile (ToxB-dif) and lethal toxin of C. sordellii (LT-sor) consist of single peptide chains of about 200,000 (Tox alpha-nov), 250,000 (LT-sor) and 275,000 (ToxB-dif) mol. wts. ToxB-dif and LT-sor but not Tox alpha-nov cross-reacted with rabbit polyclonal antibodies. Toxicity upon i.v. injection in mice was similar (LD50, 100 hr, 50-200 ng/kg) and was characterized by a slowly developing fluid loss into the interstitial space. When injected into the rat paw the toxins caused a delayed local edema lasting for days. In vitro the three toxins provoked a persistent retraction of endothelial cells cu…
Reduction of tumor necrosis factor-alpha (TNF-α) related nuclear factor-kappaB (NF-κB) translocation but not inhibitor kappa-B (Iκ-B)-degradation by Rho protein inhibition in human endothelial cells
Degradation of inhibitor kappa-B (Ikappa-B) followed by translocation of nuclear factor-kappaB (NF-kappaB) into the nucleus and activation of gene expression is essential in tumor necrosis factor-alpha (TNF-alpha)-signaling. In order to analyze the role of Rho proteins in TNF-alpha-induced NF-kappaB-activation in human umbilical cord vein endothelial cells (HUVEC) we used Clostridium difficile toxin B-10463 (TcdB-10463) which inactivates RhoA/Rac1/Cdc42 by glucosylation and Clostridium botulinum C3-toxin which inhibits RhoA/B/C by ADP-ribosylation. Exposure of HUVEC to 10 ng/mL TcdB-10463 or 2.5 microg/mL C3-toxin inhibited TNF-alpha (100 ng/mL)-induced expression of a NF-kappaB-dependent r…
Virulence-Associated Mobile Elements in Bacilli and Clostridia
This chapter focuses on (i) species that induce human diseases, (ii) species that are able to produce toxins, and (iii) the association of appropriate virulence factors with possible mobile elements. With reference to bacilli, the chapter discusses mainly Bacillus anthracis and B. cereus. A section on clostridia focuses on Clostridium perfringens, neurotoxin-producing clostridia, and species capable of producing large clostridial cytotoxins (LCTs). The chapter talks about the contribution of the genetic mobility of virulence genes to the evolution of pathogenic bacilli and clostridia. B. anthracis strains produce a tripartite protein toxin, comprising PA (protective antigen), EF (edema fact…
Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glycosyltransferases.
A detailed analysis of the 8130-bp open reading frame (ORF) of gene toxA and of an upstream ORF designated utxA, indicates the presence of a transcription terminator stem-loop for toxA, promoter sequences, and Shine-Dalgarno boxes for toxA and utxA. No transcription terminator between toxA and utxA is suggested by the sequence. ToxA contains two domains, one-third (C-terminal) with a repetitive structure and the residual two-thirds with no repetitions. The 2499-bp sequence encoding the repetitive structure is composed of nine groups of different short repetitive oligodeoxyribonucleotides (SRONs). A combination of these SRONs codes for five groups of combined repetitive oligopeptides (CROPs)…
Variant toxin B and a functional toxin A produced by Clostridium difficile C34.
A particular property of Clostridium difficile strain C34 is an insertion of approximately 2 kb in the tcdA-C34 gene that does not hinder expression of a fully active TcdA-C34 molecule. Intoxication with TcdA-C34 induced an arborized appearance in eukaryotic cells (D-type cytopathic effect); intoxication with TcdB-C34 induced a spindle-like appearance of cells (S-type cytopathic effect). Inactivation of GTPases with purified toxins revealed that Rho, Rac, Cdc42, and Rap are substrates of TcdA-C34. The variant cytotoxin TcdB-C34 inactivated Rho, Rac, Cdc42, Rap, Ral, and R-Ras. Hence, this is the first ‘S-type’ cytotoxin which inactivates both Rho and R-Ras, and is coexpressed with a ‘D-type…
The IStron CdISt1 of Clostridium difficile: molecular symbiosis of a group I intron and an insertion element
Abstract The IStron CdISt1 was first discovered as an insertion into the tcdA gene of the clinical isolate C34. It combines structural and functional properties of a group I intron at its 5′-end with those of an insertion element at its 3′-end. Up to date four different types could be found, mainly differing in their IS-element portions. Contrasting classical group I introns, CdISt1 is always integrated in ORFs encoding bacterial protein. In case CdISt1 had only the IS-element function such insertion would inactivate the protein encoded by the host gene. It is only due to the self-splicing activity of the group I intron parts that CdISt1 integration does not abolish protein function. Both e…
Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864
Here we report data describing some principles of the interaction between small GTP-binding proteins and large Clostridial cytotoxins (LCTs). Our investigation was based on the differential glucosylation of Rac1 versus RhoA by LCTs TcsL-1522, TcdB-1470 and TcdB-8864. Chimeric RhoA/Rac1 proteins and GTPases mutated at defined regions or single amino acids were used as substrates. Starting with chimeric Rac/Rho proteins we demonstrated that proteins containing the N-terminal 73 amino acids of Rac1 (but not those of RhoA) were efficiently glucosylated. Within this stretch, three regions differ significantly in Rac1 and RhoA. Regions containing amino acids 41-45 and 50-54 had no effect on toxin…
Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacingEscherichia coli
Attaching and effacing Escherichia coli (AEEC) are extracellular pathogens that induce the formation of actin-rich structures at their sites of attachment to eukaryotic host cells. We analysed whether small GTP-binding proteins of the Rho- and Ras-subfamilies, which control the cellular actin system, are essential for these bacterial-induced microfilament reorganizations. For this purpose we specifically inactivated them using the Clostridium difficile toxins TcdB-10463 and TcdB-1470. Such treatment led to a dramatic breakdown of the normal actin cytoskeleton, but did not abrogate the bacterial-induced actin rearrangements. Our data therefore indicate that the microfilament reorganizations …
Nucleotide sequence of Clostridium difficile toxin A.
Definition of the single integration site of the pathogenicity locus in Clostridium difficile.
We determined the nucleotide sequence 3.8 kb upstream and 5.2 kb downstream of the toxin genes A and B of Clostridium difficile. Nine ORFs were discovered. Based on PCR-directed approaches, two were attributed to the pathogenicity locus (PaLoc). The other seven were found in every C. difficile isolate obtained from the human gastrointestinal tract, respectless of their toxinogenicity. The ORFs cdu1 and cdu2/2' upstream of the PaLoc displayed similarity to repressors of Gram-positive bacteria (cdu1), and to an Na+/H+ antiporter described for Enterococcus hirae (cdu2/2'). Downstream of the locus a putative ABC transporter (cdd2-4) was identified. With a set of three paired primers used in pol…
Inhibition of Receptor Signaling to Phospholipase D by Clostridium difficile Toxin B
Rho proteins have been reported to activate phospholipase D (PLD) in in vitro preparations. To examine the role of Rho proteins in receptor signaling to PLD, we studied the effect of Clostridium difficile toxin B, which glucosylates Rho proteins, on the regulation of PLD activity in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor (mAChR). Toxin B treatment of HEK cells potently and efficiently blocked mAChR-stimulated PLD. In contrast, basal and phorbol ester-stimulated PLD activities were not or only slightly reduced. Cytochalasin B and Clostridium botulinum C2 toxin, mimicking the effect of toxin B on the actin cytoskeleton but without involvi…
Clostridium difficile IStron CdISt1: Discovery of a Variant Encoding Two Complete Transposase-Like Proteins
ABSTRACT Screening a Clostridium difficile strain collection for the chimeric element Cd ISt1 , we identified two additional variants, designated Cd ISt1 -0 and Cd ISt1 -III. In in vitro assays, we could prove the self-splicing ribozyme activity of these variants. Structural comparison of all known Cd ISt1 variants led us to define four types of IStrons that we designated Cd ISt1 -0 through Cd ISt1 -III. Since Cd ISt1 -0 encodes two complete transposase-like proteins (TlpA and TlpB), we suggest that it represents the original genetic element, hypothesized before to have originated by fusion of a group I intron and an insertion sequence element.
A nonsense mutation abrogates production of a functional enterotoxin A in Clostridium difficile toxinotype VIII strains of serogroups F and X.
Clostridium difficile strains of toxinotype VIII from serogroups F and X are described as toxin B-positive, toxin A-negative (TcdB+ A-), although they harbour almost the entire tcdA gene. To identify the reason for the lack of TcdA detection, we analyzed catalytic and ligand domains of TcdA-1470 of the type strain of serogroup F, strain 1470. Using recombinant fragments, the C-terminal immunodominant ligand domain TcdA3-1470, spanning amino acid residues 1694-2711 (corresponding to VPI 10463 sequence), was detected in Western blots. Similar experiments using the recombinant N-terminal catalytic fragment TcdAc1-2-1470 (amino acid positions 1-544) failed. In addition, this fragment showed no …
The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins
The enterotoxin from Clostridium difficile (ToxA) is one of the causative agents of the antibiotic-associated pseudomembranous colitis. In cultured monolayer cells ToxA exhibits cytotoxic activity to induce disassembly of the actin cytoskeleton, which is accompanied by morphological changes. ToxA-induced depolymerization of actin filaments is correlated with a decrease in the ADP-ribosylation of the low molecular mass GTP-binding Rho proteins (Just, I., Selzer, J., von Eichel-Streiber, C., and Aktories, K. (1995) J. Clin. Invest. 95, 1026-1031). Here we report on the identification of the ToxA-induced modification of Rho. Applying electrospray mass spectrometry, the mass of the modification…
Activation of astroglial phospholipase D activity by phorbol ester involves ARF and Rho proteins.
Primary cultures of rat cortical astrocytes express phospholipase D (PLD) isoforms 1 and 2 as determined by RT-PCR and Western blot. Basal PLD activity was strongly (10-fold) increased by 4beta-phorbol-12beta,13alpha-dibutyrate (PDB) (EC(50): 56 nM), an effect which was inhibited by Ro 31-8220 (0.1-1 microM), an inhibitor of protein kinase C (PKC), and by brefeldin A (10-100 microg/ml), an inhibitor of ADP-ribosylating factor (ARF) activation. Pretreatment of the cultures with Clostridium difficile toxin B-10463 (0.1-1 ng/ml), which inactivates small G proteins of the Rho family, led to a breakdown of the astroglial cytoskeleton; concomitantly, PLD activation by PDB was reduced by up to 50%…
Delineation of the catalytic domain of Clostridium difficile toxin B-10463 to an enzymatically active N-terminal 467 amino acid fragment.
Abstract In an attempt to directly approach the postulated toxic domain of Clostridium difficile 's TcdB-10463, eight subclones of different size and locations in the N-terminal third of the toxin were generated. Expression of these toxin fragments was checked in Western blots and the enzymatic activity of the expressed proteins was analyzed by glucosylating Ras related small GTP-binding proteins. Two polypeptides of 875 aa (TcdBc1–3) and 557 aa (TcdBc1-H) glucosylated their targets Rho, Rac and Cdc42 with the same activity and specificity as the holotoxin. In comparison 516 aa (TcdBc1-N) and 467 aa (TcdBc1-A) protein fragments exhibited highly reduced activity, while Tcdc1 and TcdB2–3 (aa …
Tyrosine-phosphorylation-dependent and Rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels
The polyphosphoinositide PtdIns(4,5)P2, best known as a substrate for phospholipase C isozymes, has recently been recognized to be involved in a variety of other cellular processes. The aim of this study was to examine whether the cellular levels of this versatile phospholipid are controlled by tyrosine phosphorylation. The studies were performed in human embryonic kidney (HEK)-293 cells stably expressing the M3 muscarinic acetylcholine receptor. Inhibition of tyrosine phosphatases by pervanadate induced an up-to-approx.-2.5-fold increase in the total cellular level of PtdIns(4,5)P2, which was both time- and concentration-dependent. In contrast, the tyrosine kinase inhibitors, genistein and…
Characterization of polymorphisms in the toxin A and B genes of Clostridium difficile.
We have used six independent polymerase chain reactions (A1–A3 and B1–B3) for amplification of the entire sequence of the two toxin genes tcdA and tcdB of several Clostridium difficile strains. With this approach we have detected (1) restriction site polymorphisms which are distributed all over the genes, and (2) deletions that could be found only in tcdA. Characteristic differences between strains were mainly focused to the 5′ third of tcdB (B1 fragment) and/or the 3′ third of tcdA (A3 fragment). The possible use of our approach for typing of C. difficile toxin genes is discussed.
Demonstration that the Group II Intron from the Clostridial Conjugative Transposon Tn5397 Undergoes Splicing In Vivo
Previous work has identified the conjugative transposon Tn5397 from Clostridium difficile. This element was shown to contain a group II intron. Tn5397 can be conjugatively transferred from C. difficile to Bacillus subtilis. In this work we show that the intron is spliced in both these hosts and that nonspliced RNA is also present. We constructed a mutation in the open reading frame within the intron, and this prevented splicing but did not prevent the formation of the circular form of the conjugative transposon (the likely transposition intermediate) or decrease the frequency of intergeneric transfer of Tn5397. Therefore, the intron is spliced, but splicing is not required for conjugation o…
Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation
Lethal toxin (LT) from Clostridium sordellii is one of the high molecular mass clostridial cytotoxins. On cultured cells, it causes a rounding of cell bodies and a disruption of actin stress fibers. We demonstrate that LT is a glucosyltransferase that uses UDP-Glc as a cofactor to covalently modify 21-kDa proteins both in vitro and in vivo. LT glucosylates Ras, Rap, and Rac. In Ras, threonine at position 35 was identified as the target amino acid glucosylated by LT. Other related members of the Ras GTPase superfamily, including RhoA, Cdc42, and Rab6, were not modified by LT. Incubation of serum-starved Swiss 3T3 cells with LT prevents the epidermal growth factor-induced phosphorylation of m…
Cloning and Characterization of Overlapping DNA Fragments of the Toxin A Gene of Clostridium difficile
Clostridium difficile, a human pathogen, produces two very large protein toxins, A and B (250-600 kDa), which resist dissociation into subunits. To clone the toxin A gene, a genomic library of 3-8 kb chromosomal DNA fragments of C. difficile strain VPI 10463 established in pUC12 was screened with a rabbit polyclonal toxin A antiserum. Thirty-five clones were isolated which carried 2.5-7.0 kb inserts representing a 10 kb region of the C. difficile genome. All the inserts were oriented in the same direction, suggesting that toxin A gene expression was under control of the lac promoter of the pUC12 vector. Western blot experiments revealed the presence of low amounts of fusion proteins of vari…
Control of cellular phosphatidylinositol 4,5-bisphosphate levels by adhesion signals and Rho GTPases in NIH 3T3 fibroblasts
The involvement of small GTPases of the Rho family in the control of phosphoinositide metabolism by adhesion signals was examined in NIH 3T3 fibroblasts. Abrogation of adhesion signals by detachment of cells from their substratum resulted in a time-dependent decrease in the cellular level of PtdIns(4,5)P2 by approximately 50%. This effect could be mimicked by treatment of adherent cells with Clostridium difficile toxin B and toxin B-1470, which inhibit specific subsets of Rho and Ras GTPases. Detachment of cells that had been pretreated with the clostridial toxins did not cause a further reduction in PtdIns(4,5)P2 levels, suggesting that the target GTPases are integrated into the control of…
A chimeric ribozyme in Clostridium difficile combines features of group I introns and insertion elements
CdlSt1, a DNA insertion of 1975 bp, was identified within tcdA-C34, the enterotoxin gene of the Clostridium difficile isolate C34. Located in the catalytic domain A1-C34, Cd/St1 combines features of two genetic elements. Within the first 434 nt structures characteristic for group I introns were found; encoding the two transposase-like proteins tlpA and tlpB nucleotides 435-1975 represent the remainder of a IS605-like insertion element. We show that the entire CdlSt1 is accurately spliced from tcdA-C34 primary transcripts and that purified TcdA-C34 toxin is of regular size and catalytic activity. A search for CdlSt1-related sequences demonstrates that the element is widespread in toxinogenic…
Regulation of phospholipase D activity in synaptosomes permeabilized with Staphylococcus aureus alpha-toxin.
In order to investigate the regulation of presynaptic phospholipase D (PLD) activity by calcium and G proteins, we established a permeabilization procedure for rat cortical synaptosomes using Staphylococcus aureus alpha-toxin (30-100 microg/ml). In permeabilized synaptosomes, PLD activity was significantly stimulated when the concentration of free calcium was increased from 0.1 microM to 1 microM. This activation was inhibited in the presence of KN-62 (1 microM), an inhibitor of calcium/calmodulin-dependent kinase II (CaMKII), but not by the protein kinase C inhibitor, Ro 31-8220 (1-10 microM). Synaptosomal PLD activity was also stimulated in the presence of 1 microM GTPgammaS. When Rho pro…
Restoration of Clostridium difficile toxin-B-inhibited phospholipase D by phosphatidylinositol 4,5-bisphosphate.
Receptor signalling to phospholipase D (PLD) in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor apparently involves Rho proteins. Since phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been recognized as an essential cofactor for PLD activity and since activated Rho proteins have been reported to stimulate the synthesis of PtdIns(4,5)P2, we studied whether in HEK cells PLD activity is regulated by PtdIns(4,5)P2 and, in particular, whether PtdIns(4,5)P2 can restore PLD activity inhibited by Clostridium difficile toxin B, which inactivates Rho proteins. Addition of MgATP to permeabilized HEK cells increased basal PLD activity and potentia…
Isolation and purification of plasmids from Bacteroides fragilis using rubidium trichloroacetate density gradient centrifugation.
A rapid and easy final purification method is described for the isolation of plasmids from B. fragilis. Using RbTCA density gradient centrifugation in an airfuge ultracentrifuge ccc plasmid DNA can be separated from RNA, residual chromosomal DNA, linear and oc plasmid DNA. Pure ccc plasmid DNA is obtained from cultures of between 1 ml and 2 l in less than one day.
Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells
Clostridium difficiletoxin B (TcdB) is a single-stranded protein consisting of a C-terminal domain responsible for binding to the host cell membrane, a middle part involved in internalization, and the N-terminal catalytic (toxic) part. This study shows that TcdB is processed by a single proteolytic step which cleaves TcdB10463between Leu543and Gly544and the naturally occurring variant TcdB8864between Leu544and Gly545. The cleavage occurs at neutral pH and is catalysed by a pepstatin-sensitive protease localized in the cytoplasm and on the cytoplasmic face of intracellular membranes. The smaller N-terminal cleavage products [63 121 Da (TcdB10463) and 62 761 Da (TcdB8864)] harbour the cytotox…