0000000000751779

AUTHOR

Julien Barthes

showing 6 related works from this author

A coupled lossy local-mode theory description of a plasmonic tip

2012

International audience; We investigate power propagation in a metal-coated tapered optical fiber. We analyze in detail the conversion from the fiber core guided mode to a surface plasmon polariton (SPP) confined at the tip apex. To this aim, we adapt coupled local-mode theory to include lossy modes. Two distinct regimes are identified. In the case of thin metal coating, a strong coupling regime occurs between a core guided mode and a SPP with good conversion efficiency. In the case of thick metal coating, a very weak coupling occurs. Finally, energy confinement and the role of Joule losses are discussed in the near-infrared and visible ranges. Moreover, the coupled equations derived for loc…

POLARITONSOptical fiberGeneral Physics and AstronomyPhysics::Optics02 engineering and technologyengineering.materialLossy compression01 natural scienceslaw.invention010309 opticsWAVE-GUIDESOpticsCoatinglaw0103 physical sciencesEXCITATIONFIELDPlasmonPhysicsCOMPLEXMathematical modelbusiness.industryEnergy conversion efficiency021001 nanoscience & nanotechnologySurface plasmon polaritonLIGHTengineeringStrong couplingOptoelectronics0210 nano-technologybusiness
researchProduct

Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide

2011

International audience; We theoretically investigate the spontaneous emission of a point-like dipolar emitter located near a two-dimensional plasmonic waveguide of arbitrary form. We invoke an explicit link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and nonradiative contributions to the spontaneous emission are also discussed in detail.

PhysicsCouplingWaveguide (electromagnetism)Condensed matter physicsCavity quantum electrodynamicsPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsDipole0103 physical sciencesRadiative transferPhysics::Accelerator PhysicsSpontaneous emission[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technologyPlasmonCommon emitter
researchProduct

Wave-vector analysis of plasmon-assisted distributed nonlinear photoluminescence along Au nanowires

2020

We report a quantitative analysis of the wavevector diagram emitted by nonlinear photoluminescence generated by a tightly focused pulsed laser beam and distributed along Au nanowire via the mediation of surface plasmon polaritions. The nonlinear photoluminescence is locally excited at key locations along the nanowire in order to understand the different contributions constituting the emission pattern measured in a conjugate Fourier plane of the microscope. Polarization-resolved measurements reveal that the nanowire preferentially emits nonlinear photoluminescence polarized transverse to the long axis at close to the detection limit wavevectors with a small azimuthal spread in comparison to …

Materials scienceMicroscopePhotoluminescenceNanowireFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesWave vector[NLIN]Nonlinear Sciences [physics][PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsPlasmonScattering021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurface plasmon polariton3. Good healthTransverse plane0210 nano-technologyOptics (physics.optics)Physics - Optics
researchProduct

Coupling of a dipolar emitter into one-dimensional surface plasmon.

2013

Quantum plasmonics relies on a new paradigm for light-matter interaction. It benefits from strong confinement of surface plasmon polaritons (SPP) that ensures efficient coupling at a deep subwavelength scale, instead of working with a long lifetime cavity polariton that increases the duration of interaction. The large bandwidth and the strong confinement of one dimensional SPP enable controlled manipulation of a nearby quantum emitter. This paves the way to ultrafast nanooptical devices. However, the large SPP bandwidth originates from strong losses so that a clear understanding of the coupling process is needed. In this report, we investigate in details the coupling between a single emitte…

PhysicsQuantum opticsMultidisciplinarybusiness.industrySurface plasmonNanowirePhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyBioinformatics01 natural sciencesSurface plasmon polaritonArticle0103 physical sciencesPolaritonOptoelectronics010306 general physics0210 nano-technologybusinessQuantumPlasmonCommon emitterScientific reports
researchProduct

Purcell factor for 3D- dipolar emitter coupling to 2D- plasmonic waveguides

2011

We theoretically investigate spontaneous emission of a quantum (3D) dipolar emitter located near a (2D) plasmonic waveguide of arbitrary form. The channels into which emitter couples (plasmon, scattering, electron-hole pairs creation) are well identified.

CouplingPhysicsScatteringbusiness.industrySurface plasmonCavity quantum electrodynamicsPhysics::OpticsSurface plasmon polaritonPhysics::Accelerator PhysicsOptoelectronicsSpontaneous emissionbusinessPlasmonCommon emitter2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Addressing and control of optical nanosources by integrated or fibered plasmonics

2015

Surface plasmon polariton (SPP) can confine light on subwavelength dimensions. Since they are not diffraction limited, they are of great interest for addressing and controlling optical nanosources. For example, a metal nanowire defines 1D plasmonic waveguide with a great potential for either addressing or coupling quantum emitters. Therefore, SPP opens great opportunities for integrated optical applications. However, SPP suffer from ohmic losses that jeopardize the applications of plasmonic components. In this context, we study the possibilities provided by an hybrid plasmonic-photonicstructure to couple efficiently an emitter to a fiber mode. Such a structure paves the way for fibered sing…

Hybrid plasmonic waveguideGuide plasmonique hybrideCoupled lossy mode theoryThéorie des modes couplés en présence de pertes[PHYS.PHYS] Physics [physics]/Physics [physics]Facteur de PurcellPurcell factor
researchProduct