0000000000755212

AUTHOR

Jinghai Shao

showing 3 related works from this author

Transportation cost inequalities on path and loop groups

2005

AbstractLet G be a connected Lie group with the Lie algebra G. The action of Cameron–Martin space H(G) on the path space Pe(G) introduced by L. Gross (Illinois J. Math. 36 (1992) 447) is free. Using this fact, we define the H-distance on Pe(G), which enables us to establish a transportation cost inequality on Pe(G). This method will be generalized to the path space over the loop group Le(G), so that we obtain a transportation cost inequality for heat measures on Le(G).

Discrete mathematicsPath (topology)Adjoint representationLie groupGirsanov theoremSpace (mathematics)Action (physics)Heat measuresLoop groupsLoop (topology)Loop groupLie algebraWasserstein distanceAnalysisMathematicsH-distanceJournal of Functional Analysis
researchProduct

Hamilton–Jacobi semi-groups in infinite dimensional spaces

2006

AbstractLet (X,ρ) be a Polish space endowed with a probability measure μ. Assume that we can do Malliavin Calculus on (X,μ). Let d:X×X→[0,+∞] be a pseudo-distance. Consider QtF(x)=infy∈X{F(y)+d2(x,y)/2t}. We shall prove that QtF satisfies the Hamilton–Jacobi inequality under suitable conditions. This result will be applied to establish transportation cost inequalities on path groups and loop groups in the spirit of Bobkov, Gentil and Ledoux.

Path (topology)Mathematics(all)Pure mathematicsGeneral MathematicsMathematical analysisTransportation cost inequalitiesMalliavin calculusHamilton–Jacobi equationHeat measuresLoop groupsLoop (topology)Hamilton–Jacobi semi-groupInfinite groupLoop groupPseudo-distanceMalliavin CalculusPolish spaceMathematicsProbability measureBulletin des Sciences Mathématiques
researchProduct

Fokker–Planck equation with respect to heat measures on loop groups

2011

Abstract The Dirichlet form on the loop group L e ( G ) with respect to the heat measure defines a Laplacian Δ DM on L e ( G ) . In this note, we will use Wasserstein distance variational method to solve the associated heat equation for a given data of finite entropy.

Mathematics(all)Dirichlet formGeneral Mathematics010102 general mathematicsMathematical analysis01 natural sciences010101 applied mathematicsEntropy (classical thermodynamics)Variational methodLoop groupHeat equationFokker–Planck equation0101 mathematicsConvection–diffusion equationLaplace operatorMathematicsBulletin des Sciences Mathématiques
researchProduct