6533b858fe1ef96bd12b6430
RESEARCH PRODUCT
Hamilton–Jacobi semi-groups in infinite dimensional spaces
Jinghai ShaoJinghai Shaosubject
Path (topology)Mathematics(all)Pure mathematicsGeneral MathematicsMathematical analysisTransportation cost inequalitiesMalliavin calculusHamilton–Jacobi equationHeat measuresLoop groupsLoop (topology)Hamilton–Jacobi semi-groupInfinite groupLoop groupPseudo-distanceMalliavin CalculusPolish spaceMathematicsProbability measuredescription
AbstractLet (X,ρ) be a Polish space endowed with a probability measure μ. Assume that we can do Malliavin Calculus on (X,μ). Let d:X×X→[0,+∞] be a pseudo-distance. Consider QtF(x)=infy∈X{F(y)+d2(x,y)/2t}. We shall prove that QtF satisfies the Hamilton–Jacobi inequality under suitable conditions. This result will be applied to establish transportation cost inequalities on path groups and loop groups in the spirit of Bobkov, Gentil and Ledoux.
year | journal | country | edition | language |
---|---|---|---|---|
2006-12-01 | Bulletin des Sciences Mathématiques |