0000000000759018

AUTHOR

Bertrand Bardet

showing 4 related works from this author

Decreasing dietary linoleic acid promotes long chain omega-3 fatty acid incorporation into rat retina and modifies gene expression

2011

International audience; Age-related macular degeneration (AMD) may be partially prevented by dietary habits privileging the consumption of ω3 long chain polyunsaturated fatty acids (ω3s) while lowering linoleic acid (LA) intake. The present study aimed to document whether following these epidemiological guidelines would enrich the neurosensory retina and RPE with ω3s and modulate gene expression in the neurosensory retina. Rat progenitors and pups were fed with diets containing low or high LA, and low or high ω3s. After scotopic single flash and 8-Hz-Flicker electroretinography, rat pups were euthanized at adulthood. The fatty acid profile of the neurosensory retina, RPE, liver, adipose tis…

CD36 AntigensMaleMESH : RNA MessengerMESH: 5-Lipoxygenase-Activating ProteinsMESH : Receptors LDLMESH: Electroretinography0302 clinical medicineMESH: Fatty Acids Omega-3MESH: AnimalsMESH : Retinal Ganglion Cellschemistry.chemical_classification0303 health sciencesMESH : Gene Expression RegulationMESH : ElectroretinographyMESH: RetinaMESH: Chromatography GasMESH: Dietary Fats Unsaturateddocosahexaenoic acidpolyunsaturated fatty acidSensory Systems3. Good healthnutritionMESH: Photic StimulationAdipose TissueMESH: Adipose Tissuemedicine.medical_specialtyChromatography Gasmacular degenerationLinoleic acidMESH : Arachidonate 12-LipoxygenaseArachidonate 12-LipoxygenaseMESH : Adipose TissueMESH: Arachidonate 12-Lipoxygenasepufa03 medical and health sciencesMESH : Dietary Fats UnsaturatedlipidElectroretinographyRats Long-EvansRNA MessengerMESH: Linoleic AcidMESH: Antigens CD36MESH : RetinaFatty acidMESH: Retinal Ganglion Cellseye diseasesOphthalmologyEndocrinologychemistryMESH: Receptors LDL030221 ophthalmology & optometryATP-Binding Cassette Transportersn 3MESH: FemalePhotic StimulationMESH: LiverRetinal Ganglion CellsretinaMESH : 5-Lipoxygenase-Activating Proteinsgenetic structures[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionretinal pigment epitheliumelectroretinogramMESH : Photic StimulationAdipose tissueangiogenesischemistry.chemical_compoundMESH : FemaleMESH : Rats Long-Evans2. Zero hungermedicine.diagnostic_testMESH : RatsMESH: Real-Time Polymerase Chain ReactionMESH: Gene Expression RegulationMESH : Antigens CD36medicine.anatomical_structureLiverALOX12BiochemistryMESH: ATP-Binding Cassette TransportersFemaleATP Binding Cassette Transporter 1Polyunsaturated fatty acidMESH : Fatty Acids Omega-3MESH: RatsbrainMESH : Male5-Lipoxygenase-Activating ProteinsMESH : Real-Time Polymerase Chain Reactionrhesus monkeyBiologyReal-Time Polymerase Chain ReactionMESH : Chromatography GasLinoleic AcidCellular and Molecular NeuroscienceDietary Fats UnsaturatedMESH : Linoleic AcidMESH: Rats Long-EvansInternal medicineFatty Acids Omega-3medicineAnimalsMESH : ATP-Binding Cassette TransportersOmega 3 fatty acidMESH: RNA Messenger030304 developmental biologydeficient dietRetinal pigment epitheliumMESH : LiverMESH: MaleRatsGene Expression RegulationReceptors LDLgene expressionMESH : Animalssense organs[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectroretinographyExperimental Eye Research
researchProduct

Consequences of dietary omega-3 polyunsaturated fatty acid deficiency on retinal function and intraocular pressure in the rat

2009

Purpose Omega-3 polyunsaturated fatty acids (ω3) are key components in nervous structures but their dietary intakes in the overall population are often below nutritional requirements. A chronic deficiency in ω3 is recognized to be associated with functional impairment of the retina. At the opposite, ω3 supplementation is associated with a reduced risk for AMD. The consequences of ω3 deficiency on other eye structures than the retina, such as ciliary bodies, are scarce. The purpose of our study was to compare the response of the retina and ciliary bodies to dietary ω3 deficiency in terms of fatty acid profile and eye functionality. Methods Two successive generations of Lewis rats (G1 and G2)…

medicine.medical_specialtyIntraocular pressuregenetic structuresPopulationGlaucomaBiology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCiliary bodyInternal medicinemedicine[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organseducationchemistry.chemical_classificationeducation.field_of_studymedicine.diagnostic_testFatty acidRetinalGeneral Medicinemedicine.diseaseeye diseasesOphthalmologyEndocrinologymedicine.anatomical_structureBiochemistrychemistry030221 ophthalmology & optometrysense organs030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyPolyunsaturated fatty acidElectroretinography
researchProduct

Decreasing the dietary intake of linoleic acid promotes the efficacy of dietary long chain omega-3 fatty acids to incorporate the rat retina and modi…

2011

Decreasing the dietary intake of linoleic acid promotes the efficacy of dietary long chain omega-3 fatty acids to incorporate the rat retina and modifies gene expression. annual meeting of the association-for-research-in-vision-and-ophthalmology (ARVO)

[SDV.AEN] Life Sciences [q-bio]/Food and Nutritiongenetic structures[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory Organs[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory Organs[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs[SDV.AEN]Life Sciences [q-bio]/Food and Nutritioneye diseases
researchProduct

Role of Oxidative Stress in Aging of the Retina in the ApoB100,LDLR-/- Mouse, a Murine Model of Aging of the Human Retina

2009

[SDV.AEN] Life Sciences [q-bio]/Food and NutritionIschemia[SDV.MHEP.OS] Life Sciences [q-bio]/Human health and pathology/Sensory Organsinner retina dysfunction: biochemistry and cell biologyretinal degenerations: cell biology
researchProduct