0000000000759882
AUTHOR
A. Formozov
Solar neutrino physics with Borexino
We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {\it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…
CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino
International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…
Improved measurement of $^8$B solar neutrinos with $1.5 kt·y$ of Borexino exposure
We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223\substack{+0.015 \\ -0.016}\,(stat)\,\substack{+0.006 \\ -0.006}\,(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $\Phi\substack{\rm ES \\ ^8\rm B}=2.57\substack{+0.17 \\ -0.18}(stat)\substack{+0.07\\ -0.07}(syst)\times$10$^6$ cm$^{-2}\,$s$^{-1}$. This measurement exploits the active volume of the …
Solar neutrino spectroscopy in Borexino
International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.
Simultaneous precision spectroscopy of pp, Be7, and pep solar neutrinos with Borexino Phase-II
We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day (cpd)/100 ton as unit, we find Rpp=134±10(stat)−10+6(sys), RBe=48.3±1.1(stat)−0.7+0.4(sys); and RpepHZ=2.43±0.36(stat)−0.22+0.15(sys) assuming the interaction rate RCNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high…