0000000000759915

AUTHOR

Ö. Penek

showing 18 related works from this author

Solar neutrino physics with Borexino

2018

We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {\it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.

fusionPhysics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Nuclear Experiment010303 astronomy & astrophysicsBorexinoPhysicsp p: fusion010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Gran Sasso* Automatic Keywords *Physics::Space PhysicsUnderground laboratoryBorexinoHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoexperimental resultsSciPost Physics Proceedings
researchProduct

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

2016

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

FLUXSELECTIONFERMI-LATActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesCosmic rayAstrophysicsParameter space7. Clean energy01 natural sciencesCOSMOGENIC NEUTRINOS; TRACK RECONSTRUCTION; FERMI-LAT; BURSTS; SPECTRUM; MODEL; FLUX; TELESCOPES; SELECTION; EMISSIONPulsar0103 physical sciencesTRACK RECONSTRUCTIONBURSTSddc:550Ultrahigh energy010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)SPECTRUM010308 nuclear & particles physicsStar formationCOSMOGENIC NEUTRINOSAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyMODELPhysics and Astronomy13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEMISSIONEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Astrophysical neutrinos and cosmic rays observed by IceCube

2018

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringCosmic rayAstrophysicsPhysics and Astronomy(all)7. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubecosmic raysObservatory0103 physical sciencesNeutrinos010303 astronomy & astrophysicsCosmic raysPhysicsMuon010308 nuclear & particles physicsGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosAstronomyAstronomy and AstrophysicsGeophysicsCosmic rays; IceCube; Neutrinos; Aerospace Engineering; Space and Planetary ScienceNeutrino detector13. Climate actionSpace and Planetary SciencePhysique des particules élémentairesGeneral Earth and Planetary SciencesNeutrinoNeutrino astronomy
researchProduct

Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data

2014

A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}\, \mathrm{GeV}\, \mathrm{cm}^{-2}\, \mathrm{s}^{-1}\, \mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 \sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotrop…

FLUXACTIVE GALACTIC NUCLEICosmology and Nongalactic Astrophysics (astro-ph.CO)TELESCOPESolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesddc:550010303 astronomy & astrophysicsGAMMA-RAY BURSTSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGlashow resonanceHigh Energy Physics::PhenomenologyASTRONOMYAstronomySolar neutrino problemBLAZARSPhysics and AstronomyNeutrino detector13. Climate actionLEPTONSJETSMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyEMISSIONAstrophysics - High Energy Astrophysical PhenomenaphysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

PINGU: a vision for neutrino and particle physics at the South Pole

2017

The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60,000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters $\theta_{\rm 23}$ and $\Delta m^2_{\rm 32}$, including the octan…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmixing [neutrino]atmospheric neutrinos; IceCube Neutrino Observatory; neutrino oscillations; PINGU; Nuclear and High Energy Physicspole7. Clean energy01 natural sciencesPINGUIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - ExperimentObservatoryPhysicssolar [WIMP]precision measurementAstrophysics::Instrumentation and Methods for Astrophysicsoscillation [neutrino]solar [dark matter]atmosphere [neutrino]threshold [energy]mass difference [neutrino]atmospheric neutrinosobservatoryHigh Energy Physics - PhenomenologyUpgradeNeutrino detectorupgradeNeutrinoKM3NETperformanceParticle physicsNuclear and High Energy Physicssupernova [neutrino]particle identification [neutrino/tau]Astrophysics::High Energy Astrophysical PhenomenaSUPERNOVA DETECTIONIceCube Neutrino Observatory0103 physical sciencesOSCILLATIONSmass: low [dark matter]unitarityddc:530010306 general physicsNeutrino oscillationneutrino oscillations010308 nuclear & particles physicsAstronomysensitivityKM3NeTPhysics and Astronomymass [neutrino]beam [neutrino]High Energy Physics::ExperimentgalaxyATMOSPHERIC NEUTRINOSMATTERSYSTEMLeptonmixing angle [neutrino]experimental results
researchProduct

Search for low-energy neutrinos from astrophysical sources with Borexino

2019

We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\bar{\nu}_e$) are detected in an organic liquid scintillator through the inverse $\beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $\bar{\nu}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $\bar{\nu}_e$ in the solar ne…

antineutrinosPhysics - Instrumentation and Detectorssolar flaresmagnetic field: highneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidelastic scatteringantineutrino/e: particle identification01 natural sciences7. Clean energyneutrino: fluxlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: supernova26.65.+t010303 astronomy & astrophysicsBorexinoElastic scatteringPhysicsSolar flareSupernova Relic Neutrinosneutrino: energy spectrumS067EB8neutrinosInstrumentation and Detectors (physics.ins-det)neutrino: magnetic momentDiffuse Supernova Neutrino Background3. Good healthSupernovaHomestakeddc:540neutrino: flavorAntineutrinoBorexinoNeutrino97.60.BwHomestake experimentFlareantineutrino/e: fluxAntineutrinos13.15.+G; 26.65.+T; 29.40.Mc; 97.60.Bw; Antineutrinos; Diffuse supernova neutrino background; Neutrinos; Solar flares; Supernova relic neutrinosAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSupernova relic neutrinosupernova relic neutrinosNONuclear physics13.15.+gPE2_2Antineutrinos; Neutrinos; Diffuse supernova neutrino background; Supernova relic neutrinos; Solar flares0103 physical sciencesNeutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinosdiffuse supernova neutrino background010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and Astrophysicsneutrino: particle source29.40.McGran SassoSolar flareSolar Flares13. Climate actionspectralHigh Energy Physics::Experimentexperimental results
researchProduct

Perspectives for CNO neutrino detection in Borexino

2018

International audience; Borexino measured with unprecedented accuracy the fluxes of solar neutrinos emitted at all the steps of the pp fusion chain. Still missing is the measurement of the flux of neutrinos produced in the CNO cycle. A positive measurement of the CNO neutrino flux is of fundamental importance for understanding the evolution of stars and addressing the unresolved controversy on the solar abundances. The measurement of the CNO neutrino flux in Borexino is challenging because of the low intensity of this component (CNO cycle accounts for about 1% of the energy emitted by Sun), the lack of prominent spectral features and the presence of background sources. The main background c…

CNO cycleexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidSolar neutrinosbismuth: admixtureAstrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energySolar neutrinoCNO-cycleneutrino: fluxAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Stellar evolutionBorexinoliquid scintillatorAstrophysics::Galaxy AstrophysicsPhysicsEnergy distributiondetectorbackgroundbismuth: nuclideCNO cycleNeutrino detector13. Climate actionBorexinoExperimental methodsNeutrino
researchProduct

CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

2017

International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…

Physicsneutrino: sterile: search forHistorySterile neutrinoParticle physics010308 nuclear & particles physicsInitial activitysensitivity01 natural sciencesComputer Science ApplicationsEducationPHYSICSPhysics and Astronomy (all)cesium0103 physical sciencesOSCILLATIONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexinoproposed experimentNeutrino010306 general physicsantineutrino: particle sourceBorexinotalk: Moscow 2017/10/02
researchProduct

Search for sterile neutrino mixing using three years of IceCube DeepCore data

2017

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

FLUXSterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences530High Energy Physics - ExperimentOSCILLATION EXPERIMENTSHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTRACK RECONSTRUCTIONddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemLINE-EXPERIMENT-SIMULATORMODELHigh Energy Physics - PhenomenologyNeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrino
researchProduct

Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

2015

Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\,\mathrm{TeV}$ to the $\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years o…

J.2Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScale (descriptive set theory)AstrophysicsIceCubelaw.inventionTelescopelawPoint (geometry)Anisotropyastro-ph.HE2pt-correlationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh Energy Physics::Phenomenology2pt-correlation; Astrophysical neutrinos; Extraterrestrial neutrinos; IceCube; Multipole analysis; Point sourcesAstrophysics::Instrumentation and Methods for AstrophysicsPoint sourcesAstronomyAstronomy and AstrophysicsMultipole analysis3. Good health85-05Astrophysical neutrinosddc:540Extraterrestrial neutrinosHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaMultipole expansionGamma-ray burstAstroparticle Physics
researchProduct

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

2015

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

HIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsParticle physicsAMANDAMesonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESFOS: Physical sciencesCosmic rayAstrophysicsFLUX PREDICTIONS01 natural sciencesIceCube Neutrino ObservatoryIceCubeObservatorySEARCH0103 physical sciencesddc:530Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPERFORMANCEBLAZARSPROMPT LEPTONSGAMMA-RAYPhysics and AstronomyHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsPhysical Review D
researchProduct

Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data

2017

A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of $\mu_{\nu}^{eff}$ $<$ 2.8$\cdot$10$^{-11}$ $\mu_{B}$ at 90\% c.l. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments.Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magne…

Physics and Astronomy (miscellaneous)neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrino01 natural sciencesHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)SPIN ROTATIONHigh Energy Physics - Phenomenology (hep-ph)electron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar AstrophysicsBorexinoS066MGMgalliumPhysicsMagnetic momentneutrino: magnetic momentHigh Energy Physics - Phenomenologyneutrino: momentNeutrino detectorneutrino: flavorneutrino: MajoranaMeasurements of neutrino speedBorexinoNeutrinoupper limitParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSolar neutrinoDECAYSMagnetic momentNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesddc:530010306 general physicsNeutrino oscillationDETECTORELECTROMAGNETIC PROPERTIES010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemMAJORANA NEUTRINOS[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]electron: energy spectrum[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentexperimental resultsPhysical Review D
researchProduct

Solar neutrino spectroscopy in Borexino

2018

International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.

neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoMetallicityNuclear physicsbackground: lowneutrino: spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillationSpectroscopyBorexinoPhysicsProton–proton chain reactionpp-chainp p: fusionprecision measurementDetector* Automatic Keywords *13. Climate actionsolar neutrinosspectralHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Improved measurement of $^8$B solar neutrinos with $1.5  kt·y$ of Borexino exposure

2017

We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223\substack{+0.015 \\ -0.016}\,(stat)\,\substack{+0.006 \\ -0.006}\,(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $\Phi\substack{\rm ES \\ ^8\rm B}=2.57\substack{+0.17 \\ -0.18}(stat)\substack{+0.07\\ -0.07}(syst)\times$10$^6$ cm$^{-2}\,$s$^{-1}$. This measurement exploits the active volume of the …

model: solarneutrino: solarPhysics::Instrumentation and Detectorsscintillation counter: liquidFOS: Physical sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic raysS067HPT[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Experiments in gravityNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)neutrino: interactionMSW effectcosmic radiation: energy spectrumscintillation counter: targetS067SESneutrino electron: elastic scatteringGran SassoAstrophysics - Solar and Stellar Astrophysicsneutrino: flavorHigh Energy Physics::ExperimentBorexino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyboron: semileptonic decayexperimental results
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Simultaneous precision spectroscopy of pp, Be7, and pep solar neutrinos with Borexino Phase-II

2019

We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day (cpd)/100 ton as unit, we find Rpp=134±10(stat)−10+6(sys), RBe=48.3±1.1(stat)−0.7+0.4(sys); and RpepHZ=2.43±0.36(stat)−0.22+0.15(sys) assuming the interaction rate RCNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high…

Physical Review
researchProduct

Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

2015

A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sou…

FLUXAMANDAParticle physicsPhysics::Instrumentation and DetectorsENERGIESAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayAstrophysicsACCELERATION01 natural sciencesflavor : ratioHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - Experiment (hep-ex)PionObservatory0103 physical sciencesddc:550010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsSigmashowersCOSMIC-RAYSatmosphere : backgroundtracksneutrino : flavor : rationeutrino : oscillationfluxobservatoryPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenaneutrino : VHEpi : decay
researchProduct