0000000000761188
AUTHOR
Carlos A. Vega
On the hyperbolicity of certain models of polydisperse sedimentation
The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Burger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the …
On the implementation of weno schemes for a class of polydisperse sedimentation models
The sedimentation of a polydisperse suspension of small rigid spheres of the same density, but which belong to a finite number of species (size classes), can be described by a spatially one-dimensional system of first-order, nonlinear, strongly coupled conservation laws. The unknowns are the volume fractions (concentrations) of each species as functions of depth and time. Typical solutions, e.g. for batch settling in a column, include discontinuities (kinematic shocks) separating areas of different composition. The accurate numerical approximation of these solutions is a challenge since closed-form eigenvalues and eigenvectors of the flux Jacobian are usually not available, and the characte…