6533b830fe1ef96bd129719f
RESEARCH PRODUCT
On the hyperbolicity of certain models of polydisperse sedimentation
Rosa DonatPep MuletCarlos A. VegaRaimund Bürgersubject
Conservation lawGeneral MathematicsNumerical analysisMathematical analysisGeneral EngineeringRational functionNonlinear systemsymbols.namesakeLinear algebraDiagonal matrixJacobian matrix and determinantsymbolsEigenvalues and eigenvectorsMathematicsdescription
The sedimentation of a polydisperse suspension of small spherical particles dispersed in a viscous fluid, where particles belong to N species differing in size, can be described by a strongly coupled system of N scalar, nonlinear first-order conservation laws for the evolution of the volume fractions. The hyperbolicity of this system is a property of theoretical importance because it limits the range of validity of the model and is of practical interest for the implementation of numerical methods. The present work, which extends the results of R. Burger, R. Donat, P. Mulet, and C.A. Vega (SIAM Journal on Applied Mathematics 2010; 70:2186–2213), is focused on the fluxes corresponding to the models by Batchelor and Wen, Hofler and Schwarzer, and Davis and Gecol, for which the Jacobian of the flux is a rank-3 or rank-4 perturbation of a diagonal matrix. Explicit estimates of the regions of hyperbolicity of these models are derived via the approach of the so-called secular equation (J. Anderson. Linear Algebra and Applications 1996; 246:49–70), which identifies the eigenvalues of the Jacobian with the poles of a particular rational function. Hyperbolicity of the system is guaranteed if the coefficients of this function have the same sign. Sufficient conditions for this condition to be satisfied are established for each of the models considered. Some numerical examples are presented. Copyright © 2012 John Wiley & Sons, Ltd.
year | journal | country | edition | language |
---|---|---|---|---|
2012-03-14 |