0000000000763026

AUTHOR

Jean-pierre Gazeau

showing 6 related works from this author

Generalized Heisenberg algebra and (non linear) pseudo-bosons

2018

We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.

Statistics and ProbabilityPhysical systemGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesbiorthogonal bases in quantum mechanicPhysics and Astronomy (all)0103 physical sciencesMathematical PhysicAlgebra over a field010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsBoson[PHYS]Physics [physics]Quantum Physics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)pseudo-bosonAlgebraNonlinear systemModeling and Simulationgeneralized Heisenberg algebraQuantum Physics (quant-ph)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Statistical and Nonlinear Physic
researchProduct

D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization

2015

The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2, C) of invertible 2 × 2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions…

Hermite polynomials010102 general mathematics01 natural scienceslaw.inventionClassical orthogonal polynomialsAlgebraQuantization (physics)Invertible matrixlawIrreducible representationPhase space0103 physical sciencesCoherent statespseudo-bosonsGeometry and Topology0101 mathematics010306 general physicsSettore MAT/07 - Fisica MatematicaComplex planeMathematical PhysicsAnalysisMathematics
researchProduct

Coherent states: a contemporary panorama

2012

Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…

Statistics and ProbabilityPhysicsPure mathematics010308 nuclear & particles physicsMathematics::History and Overview[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]General Physics and AstronomyStatistical and Nonlinear PhysicsQuantum entanglement01 natural sciencesPhysics::History of PhysicsGroup representationQuantization (physics)Theoretical physicsQuantum state[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Modeling and Simulation0103 physical sciencesCoherent statesQuantum gravityQuantum information010306 general physicsMathematical PhysicsComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

Extended pseudo-fermions from non commutative bosons

2013

We consider some modifications of the two dimensional canonical commutation relations, leading to {\em non commutative bosons} and we show how biorthogonal bases of the Hilbert space of the system can be obtained out of them. Our construction extends those recently introduced by one of us (FB), modifying the canonical anticommutation relations. We also briefly discuss how bicoherent states, producing a resolution of the identity, can be defined.

Pure mathematicsFOS: Physical sciences01 natural sciencessymbols.namesakeIdentity (mathematics)Theoretical physicsMeasurement theory0103 physical sciences010306 general physicsSettore MAT/07 - Fisica MatematicaCommutative propertyMathematical PhysicsComputer Science::DatabasesComputingMilieux_MISCELLANEOUSMathematicsBoson[PHYS]Physics [physics]010308 nuclear & particles physicsHilbert spaceStatistical and Nonlinear PhysicsFermionMathematical Physics (math-ph)16. Peace & justiceBiorthogonal systemsymbolspseudo-bosons[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Resolution (algebra)
researchProduct

Quantizations from reproducing kernel spaces

2012

Abstract The purpose of this work is to explore the existence and properties of reproducing kernel Hilbert subspaces of L 2 ( C , d 2 z / π ) based on subsets of complex Hermite polynomials. The resulting coherent states (CS) form a family depending on a nonnegative parameter s . We examine some interesting issues, mainly related to CS quantization, like the existence of the usual harmonic oscillator spectrum despite the absence of canonical commutation rules. The question of mathematical and physical equivalences between the s -dependent quantizations is also considered.

[PHYS]Physics [physics]PhysicsPure mathematicsHermite polynomials010102 general mathematicsSpectrum (functional analysis)FOS: Physical sciencesGeneral Physics and AstronomyMathematical Physics (math-ph)coherent states16. Peace & justice01 natural sciencesLinear subspaceQuantization (physics)Kernel (statistics)0103 physical sciencesCoherent statesCommutation0101 mathematics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsComputingMilieux_MISCELLANEOUSHarmonic oscillatorAnnals of Physics
researchProduct

Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons

2010

In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.

Solutions of wave equations: bound statesBoson systems[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesCanonical commutation relationsymbols.namesakedamped harmonic oscillator[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Modified Landau levelQuantum mechanics0103 physical sciences010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsHarmonic oscillatorEigenvalues and eigenvectorsLandau levelsBosonMathematical physicsPhysics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsLandau quantizationMathematical Physics (math-ph)harmonic oscillatorssymbolsCoherent statespseudo-bosonsHamiltonian (quantum mechanics)
researchProduct