0000000000763026
AUTHOR
Jean-pierre Gazeau
Generalized Heisenberg algebra and (non linear) pseudo-bosons
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization
The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2, C) of invertible 2 × 2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions…
Coherent states: a contemporary panorama
Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…
Extended pseudo-fermions from non commutative bosons
We consider some modifications of the two dimensional canonical commutation relations, leading to {\em non commutative bosons} and we show how biorthogonal bases of the Hilbert space of the system can be obtained out of them. Our construction extends those recently introduced by one of us (FB), modifying the canonical anticommutation relations. We also briefly discuss how bicoherent states, producing a resolution of the identity, can be defined.
Quantizations from reproducing kernel spaces
Abstract The purpose of this work is to explore the existence and properties of reproducing kernel Hilbert subspaces of L 2 ( C , d 2 z / π ) based on subsets of complex Hermite polynomials. The resulting coherent states (CS) form a family depending on a nonnegative parameter s . We examine some interesting issues, mainly related to CS quantization, like the existence of the usual harmonic oscillator spectrum despite the absence of canonical commutation rules. The question of mathematical and physical equivalences between the s -dependent quantizations is also considered.
Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons
In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.