6533b834fe1ef96bd129d79c

RESEARCH PRODUCT

D-Pseudo-Bosons, Complex Hermite Polynomials, and Integral Quantization

Fabio BagarelloS. Twareque AliJean-pierre Gazeau

subject

Hermite polynomials010102 general mathematics01 natural scienceslaw.inventionClassical orthogonal polynomialsAlgebraQuantization (physics)Invertible matrixlawIrreducible representationPhase space0103 physical sciencesCoherent statespseudo-bosonsGeometry and Topology0101 mathematics010306 general physicsSettore MAT/07 - Fisica MatematicaComplex planeMathematical PhysicsAnalysisMathematics

description

The D-pseudo-boson formalism is illustrated with two examples. The first one involves deformed complex Hermite polynomials built using finite-dimensional irreducible representations of the group GL(2, C) of invertible 2 × 2 matrices with complex entries. It reveals interesting aspects of these representations. The second example is based on a pseudo-bosonic generalization of operator-valued functions of a complex variable which resolves the identity. We show that such a generalization allows one to obtain a quantum pseudo-bosonic version of the complex plane viewed as the canonical phase space and to understand functions of the pseudo-bosonic operators as the quantized versions of functions of a complex variable.

10.3842/sigma.2015.078http://dspace.nbuv.gov.ua/handle/123456789/147152