0000000000771655

AUTHOR

Philip J. Gerrish

0000-0001-6393-0553

showing 2 related works from this author

Why are viral genomes so fragile? The bottleneck hypothesis

2021

If they undergo new mutations at each replication cycle, why are RNA viral genomes so fragile, with most mutations being either strongly deleterious or lethal? Here we provide theoretical and numerical evidence for the hypothesis that genetic fragility is partly an evolutionary response to the multiple population bottlenecks experienced by viral populations at various stages of their life cycles. Modelling within-host viral populations as multi-type branching processes, we show that mutational fragility lowers the rate at which Muller’s ratchet clicks and increases the survival probability through multiple bottlenecks. In the context of a susceptible-exposed-infectious-recovered epidemiolog…

Evolutionary GeneticsRNA virusesMutation rateEpidemiologyExtinct GenomesMedicine and Health SciencesBiology (General)Genetics0303 health sciencesEvolutionary epidemiologyEcologyMicrobial MutationGenomicsDeletion MutationComputational Theory and MathematicsViral genomesGenetic EpidemiologyModeling and SimulationViral evolutionPopulation bottlenecksVirusesRNA ViralResearch ArticleQH301-705.5Genomics[SDV.CAN]Life Sciences [q-bio]/CancerContext (language use)Genome ViralBiologyMicrobiologyGenomic InstabilityViral EvolutionBottleneckEvolution Molecular03 medical and health sciencesCellular and Molecular NeuroscienceSurvival probabilityVirologyGeneticsFragilityMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biologyEvolutionary BiologyModels Genetic030306 microbiologyOrganismsComputational BiologyBiology and Life SciencesRNAVirus evolutionOrganismal EvolutionGenetic architecture[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Population bottleneckViral replicationMutationMicrobial Evolution
researchProduct

Clonal Interference and the Evolution of RNA Viruses

1999

In asexual populations, beneficial mutations that occur in different lineages compete with one another. This phenomenon, known as clonal interference, ensures that those beneficial mutations that do achieve fixation are of large effect. Clonal interference also increases the time between fixations, thereby slowing the adaptation of asexual populations. The effects of clonal interference were measured in the asexual RNA virus vesicular stomatitis virus; rates and average effects of beneficial mutations were quantified.

GeneticsLikelihood FunctionsModels StatisticalMultidisciplinaryGenes ViralbiologyClonal interferenceRNARNA virusVirus Replicationbiology.organism_classificationAdaptation PhysiologicalBiological EvolutionModels BiologicalVesicular stomatitis Indiana virusCell LineGene FrequencyVesicular stomatitis virusCricetinaeMutationConfidence IntervalsAnimalsScience
researchProduct