0000000000773701
AUTHOR
E. Kugler
Production of radioactive Ag ion beams with a chemically selective laser ion source
Abstract We have developed a chemically selective laser ion source at the CERN-ISOLDE facility in order to study neutron-rich Ag nuclides. A pulsed laser system with high repetition rate has been used based on high-power coppe-vapour pump lasers and dye lasers. With this source significant reductions of the isobaric background has been achieved.
Selective laser ionization of radioactive Ni-isotopes
Abstract A chemically selective laser ion source based on resonance ionization of atoms in a hot cavity has been applied in the study of Ni-isotopes at the CERN-ISOLDE on-line isotope separator. Laser ionization enhanced the yields of long-lived Ni-isotopes almost four orders of magnitude when compared to the yields obtained with the surface ionization mode of the source. As a result, high yields of long-lived Ni-isotopes were obtained. Separation efficiencies of 0.3 and 0.8% were obtained for Ni produced in uranium-carbide, produced from uranium-di-pthalocyanine, and Ta-foil targets, respectively. Ni was found to be released very slowly from the present target and ion source combination.
The new CERN-ISOLDE on-line mass-separator facility at the PS-Booster
The ISOLDE on-line isotope separators have been operated since 1967 at the CERN-SC. This 600 MeV proton synchro-cyclotron had to be shut down in December 1990 after 33 years of service and it was decided to move ISOLDE to a new experimental area. The new on-line mass-separator facility is now under construction at the CERN PS-Booster. This accelerator provides an average current of about 2-mu-A of 1 GeV protons in very short high intensity pulses at low repetition rate. The beam can hit either one of the two target stations, the general purpose separator (GPS), a reconstructed ISOLDE-2 type machine (which can deliver beams simultaneously into three beam lines), and the high resolution separ…
A new pulsed release method for element selective production of neutron rich isotopes near 208Pb
Abstract A new method to reduce the isobaric contamination problem for the production of neutron rich Bi, Pb and Tl nuclei at on-line mass separators, based on the pulsed release of these radioactive species, is presented. The results of a feasibility study are reported.