0000000000775239

AUTHOR

G. Barinovs

showing 5 related works from this author

Design and operation of CMOS-compatible electron pumps fabricated with optical lithography

2017

We report CMOS-compatible quantized current sources (electron pumps) fabricated with nanowires (NWs) on 300mm SOI wafers. Unlike other Al, GaAs or Si based metallic or semiconductor pumps, the fabrication does not rely on electron-beam lithography. The structure consists of two gates in series on the nanowire and the only difference with the SOI nanowire process lies in long (40nm) nitride spacers. As a result a single, silicide island gets isolated between the gates and transport is dominated by Coulomb blockade at cryogenic temperatures thanks to the small size and therefore capacitance of this island. Operation and performances comparable to devices fabricated using e-beam lithography is…

Materials science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanowireSilicon on insulatorPhysics::OpticsFOS: Physical sciences02 engineering and technology7. Clean energy01 natural sciencesCapacitancelaw.inventionOptical pumpingCondensed Matter::Materials Sciencelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsLithographyComputingMilieux_MISCELLANEOUSCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCoulomb blockade021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsComputer Science::OtherCMOSOptoelectronicsPhotolithography0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]
researchProduct

Study of silicon crystal surface formation based on molecular dynamics simulation results

2014

Abstract The equilibrium shape of 〈 110 〉 -oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of { 111 } surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid–liquid interface was constructed using the same model of the shape as for the solid–vapor interface. The parameters describing solid–liquid interface shape were found using values of surface energies in low-index dir…

Materials scienceSiliconchemistry.chemical_elementThermodynamicsFloat-zone siliconCondensed Matter PhysicsSurface energyInorganic ChemistryMonocrystalline siliconCrystalCrystallographyMolecular dynamicsPhase linechemistryMaterials ChemistryScalingJournal of Crystal Growth
researchProduct

Dopant-controlled single-electron pumping through a metallic island

2016

We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

Materials sciencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesSilicon on insulator02 engineering and technologyElectron01 natural sciences[PHYS] Physics [physics]MetalElectron transferMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Quantum tunnelling[PHYS]Physics [physics]Condensed Matter - Mesoscale and Nanoscale PhysicsDopantbusiness.industryResonance021001 nanoscience & nanotechnology[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]visual_artvisual_art.visual_art_mediumOptoelectronicsRadio frequency0210 nano-technologybusiness[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat]Applied Physics Letters
researchProduct

Numerical study of silicon crystal ridge growth

2014

Abstract The size of the ridge-like protrusions appearing on the external surface of dislocation-free 〈 100 〉 silicon crystals grown from a melt was studied theoretically. According to existing models the growth of the ridges is caused by the presence of { 111 } crystal planes at the crystal–melt interface. They affect the height of triple phase line, free surface orientation and the crystal growth angle. A numerical 2-dimensional model was proposed for the calculation of the size of the crystal ridges. The model included the effect of the undercooling of the crystal–melt interface on the crystal growth angle. The numerical model estimated the effect of the ridge size on the free surface at…

geographyMaterials sciencegeography.geographical_feature_categorySiliconCondensed matter physicsPhysics::Opticschemistry.chemical_elementCrystal growthCondensed Matter Physicslaw.inventionInorganic ChemistryMonocrystalline siliconCrystalCrystallographychemistryPhase linelawRidgeCondensed Matter::SuperconductivityMaterials ChemistrySupercoolingCzochralski processJournal of Crystal Growth
researchProduct

Modeling of an adiabatic tunable-barrier electron pump

2014

PhysicsQuantum mechanicsElectronAtomic physicsAdiabatic process29th Conference on Precision Electromagnetic Measurements (CPEM 2014)
researchProduct