0000000000777953

AUTHOR

Ekta Chaubey

From elliptic curves to Feynman integrals

In this talk we discuss Feynman integrals which are related to elliptic curves. We show with the help of an explicit example that in the set of master integrals more than one elliptic curve may occur. The technique of maximal cuts is a useful tool to identify the elliptic curves. By a suitable transformation of the master integrals the system of differential equations for our example can be brought into a form linear in $\varepsilon$, where the $\varepsilon^0$-term is strictly lower-triangular. This system is easily solved in terms of iterated integrals.

research product

Differential equations for Feynman integrals beyond multiple polylogarithms

Differential equations are a powerful tool to tackle Feynman integrals. In this talk we discuss recent progress, where the method of differential equations has been applied to Feynman integrals which are not expressible in terms of multiple polylogarithms.

research product

Simplifying differential equations for multi-scale Feynman integrals beyond multiple polylogarithms

In this paper we exploit factorisation properties of Picard-Fuchs operators to decouple differential equations for multi-scale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to $\varepsilon$-form.

research product

The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter

We compute systematically for the planar double box Feynman integral relevant to top pair production with a closed top loop the Laurent expansion in the dimensional regularisation parameter $\varepsilon$. This is done by transforming the system of differential equations for this integral and all its sub-topologies to a form linear in $\varepsilon$, where the $\varepsilon^0$-part is strictly lower triangular. This system is easily solved order by order in the dimensional regularisation parameter $\varepsilon$. This is an example of an elliptic multi-scale integral involving several elliptic sub-topologies. Our methods are applicable to similar problems.

research product