6533b85afe1ef96bd12b8e2c
RESEARCH PRODUCT
Simplifying differential equations for multi-scale Feynman integrals beyond multiple polylogarithms
Luise AdamsEkta ChaubeyStefan Weinzierlsubject
High Energy Physics - Theory010308 nuclear & particles physicsDifferential equationNumerical analysisGeneral Physics and AstronomyOrder (ring theory)FOS: Physical sciencesDecoupling (cosmology)Picard–Fuchs equation01 natural sciencesHigh Energy Physics - PhenomenologyOperator (computer programming)High Energy Physics - Phenomenology (hep-ph)FactorizationHigh Energy Physics - Theory (hep-th)0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematics010306 general physicsMathematicsNumerical partial differential equationsdescription
In this paper we exploit factorisation properties of Picard-Fuchs operators to decouple differential equations for multi-scale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to $\varepsilon$-form.
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-14 |