0000000000018471
AUTHOR
Luise Adams
The kite integral to all orders in terms of elliptic polylogarithms
We show that the Laurent series of the two-loop kite integral in $D=4-2\varepsilon$ space-time dimensions can be expressed in each order of the series expansion in terms of elliptic generalisations of (multiple) polylogarithms. Using differential equations we present an iterative method to compute any desired order. As an example, we give the first three orders explicitly.
The Elliptic Sunrise
In this talk, we discuss our recent computation of the two-loop sunrise integral with arbitrary non-zero particle masses. In two space-time dimensions, we arrive at a result in terms of elliptic dilogarithms. Near four space-time dimensions, we obtain a result which furthermore involves elliptic generalizations of Clausen and Glaisher functions.
The sunrise integral and elliptic polylogarithms
We summarize recent computations with a class of elliptic generalizations of polylogarithms, arising from the massive sunrise integral. For the case of arbitrary masses we obtain results in two and four space-time dimensions. The iterated integral structure of our functions allows us to furthermore compute the equal mass case to arbitrary order.
The $\varepsilon$-form of the differential equations for Feynman integrals in the elliptic case
Feynman integrals are easily solved if their system of differential equations is in $\varepsilon$-form. In this letter we show by the explicit example of the kite integral family that an $\varepsilon$-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The $\varepsilon$-form is obtained by a (non-algebraic) change of basis for the master integrals.
A walk on sunset boulevard
A walk on sunset boulevard can teach us about transcendental functions associated to Feynman diagrams. On this guided tour we will see multiple polylogarithms, differential equations and elliptic curves. A highlight of the tour will be the generalisation of the polylogarithms to the elliptic setting and the all-order solution for the sunset integral in the equal mass case.
From elliptic curves to Feynman integrals
In this talk we discuss Feynman integrals which are related to elliptic curves. We show with the help of an explicit example that in the set of master integrals more than one elliptic curve may occur. The technique of maximal cuts is a useful tool to identify the elliptic curves. By a suitable transformation of the master integrals the system of differential equations for our example can be brought into a form linear in $\varepsilon$, where the $\varepsilon^0$-term is strictly lower-triangular. This system is easily solved in terms of iterated integrals.
Differential equations for Feynman integrals beyond multiple polylogarithms
Differential equations are a powerful tool to tackle Feynman integrals. In this talk we discuss recent progress, where the method of differential equations has been applied to Feynman integrals which are not expressible in terms of multiple polylogarithms.
Feynman integrals and iterated integrals of modular forms
In this paper we show that certain Feynman integrals can be expressed as linear combinations of iterated integrals of modular forms to all orders in the dimensional regularisation parameter $\varepsilon$ . We discuss explicitly the equal mass sunrise integral and the kite integral. For both cases we give the alphabet of letters occurring in the iterated integrals. For the sunrise integral we present a compact formula, expressing this integral to all orders in $\varepsilon$ as iterated integrals of modular forms.
Simplifying differential equations for multi-scale Feynman integrals beyond multiple polylogarithms
In this paper we exploit factorisation properties of Picard-Fuchs operators to decouple differential equations for multi-scale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to $\varepsilon$-form.
On a Class of Feynman Integrals Evaluating to Iterated Integrals of Modular Forms
In this talk we discuss a class of Feynman integrals, which can be expressed to all orders in the dimensional regularisation parameter as iterated integrals of modular forms. We review the mathematical prerequisites related to elliptic curves and modular forms. Feynman integrals, which evaluate to iterated integrals of modular forms go beyond the class of multiple polylogarithms. Nevertheless, we may bring for all examples considered the associated system of differential equations by a non-algebraic transformation to an \(\varepsilon \)-form, which makes a solution in terms of iterated integrals immediate.
The Elliptic Sunrise
In this talk, we discuss our recent computation of the two-loop sunrise integral with arbitrary non-zero particle masses in the vicinity of the equal mass point. In two space-time dimensions, we arrive at a result in terms of elliptic dilogarithms. Near four space-time dimensions, we obtain a result which furthermore involves elliptic generalizations of Clausen and Glaisher functions.
The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter
We compute systematically for the planar double box Feynman integral relevant to top pair production with a closed top loop the Laurent expansion in the dimensional regularisation parameter $\varepsilon$. This is done by transforming the system of differential equations for this integral and all its sub-topologies to a form linear in $\varepsilon$, where the $\varepsilon^0$-part is strictly lower triangular. This system is easily solved order by order in the dimensional regularisation parameter $\varepsilon$. This is an example of an elliptic multi-scale integral involving several elliptic sub-topologies. Our methods are applicable to similar problems.