6533b828fe1ef96bd12879d2
RESEARCH PRODUCT
The $\varepsilon$-form of the differential equations for Feynman integrals in the elliptic case
Luise AdamsStefan Weinzierlsubject
PhysicsHigh Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsFeynman integralDifferential equationElliptic caseFOS: Physical sciences01 natural scienceslcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)System of differential equationsHigh Energy Physics - Theory (hep-th)0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION010306 general physicsChange of basislcsh:PhysicsMathematical physicsdescription
Feynman integrals are easily solved if their system of differential equations is in $\varepsilon$-form. In this letter we show by the explicit example of the kite integral family that an $\varepsilon$-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The $\varepsilon$-form is obtained by a (non-algebraic) change of basis for the master integrals.
year | journal | country | edition | language |
---|---|---|---|---|
2018-06-01 |