0000000000780248

AUTHOR

J. C. Wheeler

showing 3 related works from this author

XIPE: the x-ray imaging polarimetry explorer

2016

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

X-ray AstronomyHigh-energy astronomyPolarimetryX-ray opticsX-ray telescopeCondensed Matter Physic01 natural sciencesObservatory0103 physical sciencesPolarimetryElectronicOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010303 astronomy & astrophysicsGas Pixel DetectorPhysicsX-ray astronomyta115X-ray optics010308 nuclear & particles physicsElectronic Optical and Magnetic MaterialApplied MathematicsVegaAstronomyComputer Science Applications1707 Computer Vision and Pattern RecognitionGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray opticsCondensed Matter PhysicsComputer Science ApplicationsApplied MathematicGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications; Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringComputer Vision and Pattern RecognitionX-ray optic
researchProduct

Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

2017

Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Ataca…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSubmillimeter Arraychemistry.chemical_compound0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsLarge Magellanic CloudEjecta010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSilicon monoxideAstrophysics - Astrophysics of GalaxiesInterstellar mediumCore (optical fiber)StarsSupernovachemistryAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta

2019

We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO $J$=2 $\!\rightarrow\!$ 1, $J$=6 $\!\rightarrow\!$ 5, and SiO $J$=5 $\!\rightarrow\!$ 4 to $J$=7 $\!\rightarrow\!$ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H$\alpha$ images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO $J$=6 $\!\rightarrow\!$ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In t…

astro-ph.SR010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMoleculeEjecta010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]QB799The Astrophysical Journal
researchProduct