0000000000780248
AUTHOR
J. C. Wheeler
XIPE: the x-ray imaging polarimetry explorer
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…
Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D
Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Ataca…
High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO $J$=2 $\!\rightarrow\!$ 1, $J$=6 $\!\rightarrow\!$ 5, and SiO $J$=5 $\!\rightarrow\!$ 4 to $J$=7 $\!\rightarrow\!$ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H$\alpha$ images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO $J$=6 $\!\rightarrow\!$ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In t…