0000000000785517

AUTHOR

Takayuki Uozumi

Interpretation of absorption edges by resonant electronic spectroscopy: experiment and theory

Abstract Resonant electronic spectroscopy consists in measuring a non-radiative decay process (Auger or autoionization process) excited with photon energies around an absorption edge. The resonant spectra carry information both on the nature of the electronic transitions near the absorption edge by scanning the very first empty orbitals above the Fermi level (through the absorption process), and, on the other hand, on the atomic electronic configuration through the lineshape of the observed decay process. In this paper, after a quick review of the pioneering works in this field, we show that resonant measurements and their theoretical modeling can be used to precisely interpret complex abso…

research product

Hard X-ray resonant electronic spectroscopy in transition metal oxides

K-edge X-ray absorption and 2p-XPS spectra of 3d-element oxides present spectral features which cannot be explained within a simple one-electron model. These features reveal the fine electronic structure of transition metal (TM) oxides valence states resulting from hybridized TM-3d and O-2p states, and the correlations between these valence electrons. In this paper, we show how resonant electronic spectroscopy (resonant Auger or resonant photoelectron spectroscopy) around the TM K-edge can be used to interpret the structures of the threshold and, with the help of theoretical calculation, to determine the electronic configuration of the excited ion. Quadrupolar transitions towards localized …

research product