0000000000790363
AUTHOR
Cedric Demonceaux
PanoRoom: From the Sphere to the 3D Layout
We propose a novel FCN able to work with omnidirectional images that outputs accurate probability maps representing the main structure of indoor scenes, which is able to generalize on different data. Our approach handles occlusions and recovers complex shaped rooms more faithful to the actual shape of the real scenes. We outperform the state of the art not only in accuracy of the 3D models but also in speed.
Deep Reinforcement Learning with Omnidirectional Images: application to UAV Navigation in Forests
Deep Reinforcement Learning (DRL) is highly efficient for solving complex tasks such as drone obstacle avoidance using cameras. However, these methods are often limited by the camera perception capabilities. In this paper, we demonstrate that point-goal navigation performances can be improved by using cameras with a wider Field-Of-View (FOV). To this end, we present a DRL solution based on equirectangular images and demonstrates its relevance, especially compared to its perspective version. Several visual modalities are compared: ground truth depth, RGB, and depth directly estimated from these 360°R GB images using Deep Learning methods. Next, we propose a spherical adaptation to take into …