0000000000791433

AUTHOR

Marion Gruart

Spontaneous intercalation of Ga and In bilayers during plasma-assisted molecular beam epitaxy growth of GaN on graphene on SiC

The formation of a self-limited metallic bilayer is reported during the growth of GaN by plasma-assisted molecular beam epitaxy on graphene on (0001) SiC. Depending on growth conditions, this layer may consist of either Ga or In, which gets intercalated between graphene and the SiC surface. Diffusion of metal atoms is eased by steps at SiC surface and N plasma induced defects in the graphene layer. Energetically favorable wetting of the (0001) SiC surface by Ga or In is tentatively assigned to the breaking of covalent bonds between (0001) SiC surface and carbon buffer layer. As a consequence, graphene doping and local strain/doping fluctuations decrease. Furthermore, the presence of a metal…

research product

Impact of kinetics on the growth of GaN on graphene by plasma-assisted molecular beam epitaxy.

International audience; The growth of GaN on graphene by molecular beam epitaxy was investigated. The most stable epitaxial relationship, i.e. [00.1]-oriented grains, is obtained at high temperature and N-rich conditions, which match those for nanowire growth. Alternatively, at moderate temperature and Ga-rich conditions, several metastable orientations are observed at the nucleation stage, which evolve preferentially towards [00.1]-oriented grains. The dependence of the nucleation regime on growth conditions was assigned to Ga adatom kinetics. This statement is consistent with the calculated graphene/GaN in-plane lattice coincidence and supported by a combination of transmission electron m…

research product

The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes.

Abstract The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN …

research product