6533b83afe1ef96bd12a7207
RESEARCH PRODUCT
Impact of kinetics on the growth of GaN on graphene by plasma-assisted molecular beam epitaxy.
Catherine BougerolBruno DaudinNúria GarroEdith Bellet-amalricHanako OkunoAna CrosMarion GruartStéphanie PougetNathaniel FeldbergBruno Gayralsubject
PhotoluminescenceMaterials scienceNucleationNanowireBioengineering02 engineering and technology010402 general chemistryEpitaxy01 natural scienceslaw.inventionGaNsymbols.namesakelawGeneral Materials ScienceElectrical and Electronic EngineeringGrapheneMechanical EngineeringVan der Waals epitaxyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMechanics of MaterialsChemical physicsTransmission electron microscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyMolecular beam epitaxydescription
International audience; The growth of GaN on graphene by molecular beam epitaxy was investigated. The most stable epitaxial relationship, i.e. [00.1]-oriented grains, is obtained at high temperature and N-rich conditions, which match those for nanowire growth. Alternatively, at moderate temperature and Ga-rich conditions, several metastable orientations are observed at the nucleation stage, which evolve preferentially towards [00.1]-oriented grains. The dependence of the nucleation regime on growth conditions was assigned to Ga adatom kinetics. This statement is consistent with the calculated graphene/GaN in-plane lattice coincidence and supported by a combination of transmission electron microscopy, x-ray diffraction, photoluminescence, and Raman spectroscopy experiments.
year | journal | country | edition | language |
---|---|---|---|---|
2019-12-24 | Nanotechnology |