6533b83afe1ef96bd12a7207

RESEARCH PRODUCT

Impact of kinetics on the growth of GaN on graphene by plasma-assisted molecular beam epitaxy.

Catherine BougerolBruno DaudinNúria GarroEdith Bellet-amalricHanako OkunoAna CrosMarion GruartStéphanie PougetNathaniel FeldbergBruno Gayral

subject

PhotoluminescenceMaterials scienceNucleationNanowireBioengineering02 engineering and technology010402 general chemistryEpitaxy01 natural scienceslaw.inventionGaNsymbols.namesakelawGeneral Materials ScienceElectrical and Electronic EngineeringGrapheneMechanical EngineeringVan der Waals epitaxyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMechanics of MaterialsChemical physicsTransmission electron microscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyMolecular beam epitaxy

description

International audience; The growth of GaN on graphene by molecular beam epitaxy was investigated. The most stable epitaxial relationship, i.e. [00.1]-oriented grains, is obtained at high temperature and N-rich conditions, which match those for nanowire growth. Alternatively, at moderate temperature and Ga-rich conditions, several metastable orientations are observed at the nucleation stage, which evolve preferentially towards [00.1]-oriented grains. The dependence of the nucleation regime on growth conditions was assigned to Ga adatom kinetics. This statement is consistent with the calculated graphene/GaN in-plane lattice coincidence and supported by a combination of transmission electron microscopy, x-ray diffraction, photoluminescence, and Raman spectroscopy experiments.

10.1088/1361-6528/ab5c15https://pubmed.ncbi.nlm.nih.gov/31774414