0000000000026217

AUTHOR

Núria Garro

Optical properties of wurtzite GaN/AlN quantum dots grown on non-polar planes: the effect of stacking faults in the reduction of the internal electric field

The optical emission of non-polar GaN/AlN quantum dots has been investigated. The presence of stacking faults inside these quantum dots is evidenced in the dependence of the photoluminescence with temperature and excitation power. A theoretical model for the electronic structure and optical properties of non-polar quantum dots, taking into account their realistic shapes, is presented which predicts a substantial reduction of the internal electric field but a persisting quantum confined Stark effect, comparable to that of polar GaN/AlN quantum dots. Modeling the effect of a 3 monolayer stacking fault inside the quantum dot, which acts as zinc-blende inclusion into the wurtzite matrix, result…

research product

Lattice dynamics of CuAlO2 under high pressure fromab initio calculations

The density functional perturbation theory is employed to study the vibrational properties of CuAlO 2 under pressure. The calculations are preformed using the pseudopotential wave method and the local density approximation for the exchange-correlation (XC) potential. The d electrons of Cu are treated as valence states. We present the phonon dispersion curves. Our results are in good agreement with the available experimental Raman scattering experiments. Ab initio calculations show the presence of a dynamical instability, possibly related with the experimentally observed phase transition.

research product

Reduction of the internal electric field in GaN/AlN quantum dots grown on the a ‐plane of SiC substrates

We present a study of the emission of a multi-layer stack of self-assembled GaN/AlN quantum dots grown on the a -plane of 6H-SiC. We look for signatures of the internal electric field in the power dependence of the time-integrated and time-resolved photoluminescence spectra. The lack of a dynamical red-shift reveals that internal electric fields are significantly reduced in these dots. A band on the low energy side of the emission is observed whose intensity quenches fast when increasing the temperature. The polarization selection rules of the emission are examined in order to determine the physical nature of this band. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

research product

Inhomogeneous free-electron distribution in InN nanowires: Photoluminescence excitation experiments

Photoluminescence excitation (PLE) spectra have been measured for a set of self-assembled InN nanowires (NWs) and a high-crystalline quality InN layer grown by molecular-beam epitaxy. The PLE experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN NW. The differences in the PLE spectra can be accounted for the inhomogeneous electron distribution within the NWs caused by a bulk donor concentration $({N}_{D}^{+})$ and a two-dimensional density of ionized surface states $({N}_{ss}^{+})$. For NW radii larger than 30 nm, ${N}_{D}^{+}$ and ${N}_{ss}^{+}$ modify the absorption edge and the lineshape, respectively, and can be determined f…

research product

Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

research product

Deformation profile in GaN quantum dots: Medium-energy ion scattering experiments and theoretical calculations

Medium energy ion scattering (MEIS) has been used to measure at the scale of the monolayer the deformation profile of self-organized GaN quantum dots grown on AlN by molecular-beam epitaxy. The effect of capping the GaN dots by a thin layer of AlN has also been studied. It is shown that GaN dots are partially relaxed in every situation. Capping them with AlN has little effect on the basal plane, as expected, but strongly modifies the strain of the upper part of dots. The experimental results are compared with theoretical calculations, allowing one to conclude that GaN quantum dots experience a nonbiaxial strain, which drastically decreases when going from the basal plane up to the apex of t…

research product

Photoluminescence and Raman spectroscopy of MBE‐grown InN nanocolumns

InN nanocolumns grown under different conditions by plasma-assisted molecular beam epitaxy on p-Si (111) substrates are studied by micro-Raman and photoluminescence (PL) spectroscopies. The nanocolumns are free of strain and have an improved crystal quality as shown by the frequency and linewidth of the nonpolar E2h mode. Uncoupled polar modes coexist with a couple LO phonon-plasmon mode and are sensitive to the nanocolumn morphology. Variations in the growth conditions also modify the PL spectra significantly. An increase in the PL energy also involves a reduction of the integrated intensity and an increase of the PL linewidth. This overall phenomenology highlights the role of the surface …

research product

Optical properties of nitride nanostructures

In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or t…

research product

Lattice dynamics study of scheelite tungstates under high pressure I.BaWO4

Room-temperature Raman scattering has been measured in lead tungstate up to 17 GPa. We report the pressure dependence of all the Raman modes of the tetragonal scheelite phase PbWO4-I or stolzite, space group I41 /a, which is stable at ambient conditions. Upon compression the Raman spectrum undergoes significant changes around 6.2 GPa due to the onset of a partial structural phase transition to the monoclinic PbWO4-III phase space group P21 /n. Further changes in the spectrum occur at 7.9 GPa, related to a scheelite-to-fergusonite transition. This transition is observed due to the sluggishness and kinetic hindrance of the I → III transition. Consequently, we found the coexistence of the sche…

research product

ZnO nanoparticles embedded in UVM-7-like mesoporous silica materials: Synthesis and characterization

Abstract ZnO nanodomains embedded in bimodal mesoporous silica (UVM-7) materials with high Zn content (4≤Si/Zn≤30) have been synthesized by an one-pot surfactant-assisted procedure from a hydro alcoholic medium using a cationic surfactant (CTMABr=cetyltrimethylammonium bromide) as structural directing agent, and starting from molecular atrane complexes of Zn and Si as hydrolytic inorganic precursors. This chemical procedure allows optimizing the dispersion of the ZnO particles in the silica walls. The bimodal mesoporous nature of the final high surface area nano-sized materials is confirmed by XRD, TEM, and N2 adsorption–desorption isotherms. The small intra-particle mesopore system is due …

research product

Effect of impurities on Raman and photoluminescence spectra of AlN bulk crystals

ABSTRACTRaman scattering and photoluminescence (PL) spectroscopy with sub-bandgap excitation has been applied to explore tracing of common impurities (in particular of oxygen) in AlN. Bulk AlN crystals grown by the high temperature sublimation method were studied. PL bands have been observed at around 375 nm and at 560–660 nm and have been attributed to oxygen and to nitrogen vacancy/aluminium excess defects, respectively. The 375 nm UV PL band was found to shift with oxygen concentration. Micro-Raman spectra of the bulk AlN samples were measured in different polarisations. Besides normal Raman modes of AlN the presence of additional vibrational modes was detected. The modes were discussed …

research product

Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties

In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…

research product

Physical properties and applications of InxGa1−xN nanowires

We have successfully grown InxGa1−xN nanowires by plasma-assisted molecular beam epitaxy on silicon substrates. The alloy composition and crystal quality have been analyzed by Raman scattering, photoluminescence spectroscopy and x-ray fluorescence nanoprobe techniques. InxGa1−xN is an one-mode alloy, where the different optical modes have an intermediate frequency of that of pure InN and GaN. The sample composition can be derived from the Raman data. On the other hand, by using the optical gap provided by the emission spectra, we conclude that the samples have a lower Ga content than that provided by the Raman analysis. X-ray fluorescence maps and photoluminescence measured in single nanowi…

research product

Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.

International audience; The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques ha…

research product

Optical properties of InN nanocolumns: Electron accumulation at InN non‐polar surfaces and dependence on the growth conditions

InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present atthe non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the densit…

research product

Resonant Raman scattering in self-assembledGaN∕AlNquantum dots

Self-assembled $\mathrm{Ga}\mathrm{N}∕\mathrm{Al}\mathrm{N}$ quantum dots have been investigated by means of Raman scattering. A resonant enhancement of the Raman peaks has been observed when the excitation is tuned above the GaN band-gap energy. The polar mode nature, either quasiconfined or interfacial, has been assigned after comparing with the polar optical modes of spheroidal dots calculated within the framework of the anisotropic dielectric continuum model. The built-in strain of the GaN dots induced a substantial blueshift of the nonpolar ${E}_{2H}$ Raman mode frequency. A theoretical model that analyzes the three-dimensional strain distribution in the quantum dots has been employed …

research product

Evaluation of strain in GaN/AlN quantum dots by means of resonant Raman scattering: the effect of capping

We have studied in detail changes in the strain state of GaN/AlN quantum dots during the capping process. μ-Raman scattering experiments allowed the detection of a resonant mode which provided information on the evolution of strain with capping. Simultaneously, Multiwavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) experiments were performed on the same samples, providing the independent determination of the wurtzite lattice parameters a and c. The remarkable agreement between Raman and X-ray data stands out the suitability of polar vibrational modes for the determination of strain in nanostructures. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

research product

Innocampus Explora: Nuevas formas de comunicar ciencia

[EN] Innocampus Explora aims to show the students of the Burjassot-Paterna campus of the Universitat de València how the different scientific degrees are interrelated. To do this we propose activities in which students and teachers work together to cover the interdisciplinary nature of science, both in everyday and professional issues. Throughout this course the activities developed relate to new ways to communicate science. With the development of this project we contribute to a transversal quality education for all the participating students.

research product

Influence of strain in the reduction of the internal electric field in GaN/AlN quantum dots grown ona-plane 6H-SiC

The strain state of stacks of GaN/AIN quantum dots (QDs) grown on (0001) and (1120) 6H-SiC has been investigated by means of Raman spectroscopy. Depending on the orientation of the wurtzite axis with respect to the growth direction it is found that the piezoelectric contribution to the electrostatic potential may either reinforce that arising from the spontaneous polarization or oppose it. The experimental results are compared with a theoretical model for the strain and polarization field in QDs of both orientations that allows the calculation of the electrostatic potential in the QDs. Both the experimental results and the theoretical model indicate that the internal electric field and elec…

research product

Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4

The room-temperature Raman scattering was measured in ${\text{ZnWO}}_{4}$ up to 45 GPa. We report the pressure dependence of all the Raman-active phonons of the low-pressure wolframite phase. As pressure increases additional Raman peaks appear at 30.6 GPa due to the onset of a reversible structural phase transition to a distorted monoclinic $\ensuremath{\beta}$-fergusonite-type phase. The low-pressure and high-pressure phases coexist from 30.6 to 36.5 GPa. In addition to the Raman measurements we also report ab initio total-energy and lattice-dynamics calculations for the two phases. These calculations helped us to determine the crystalline structure of the high-pressure phase and to assign…

research product

Effect of chain extender on the morphology, thermal, viscoelastic, and dielectric behavior of soybean polyurethane

research product

Direct observation of elemental segregation in InGaN nanowires by X-ray nanoprobe

Using synchrotron radiation nanoprobe, this work reports on the elemental distribution in single Inx Ga1–xN nanowires (NWs) grown by molecular beam epitaxy directly on Si(111) substrates. Single NWs dispersed on Al covered sapphire were characterized by nano-X-ray fluorescence, Raman scattering and photoluminescence spectroscopy. Both Ga and In maps reveal an inhomogeneous axial distribution inside sin- gle NWs. The analysis of NWs from the same sample but with different dimensions suggests a decrease of In segregation with the reduction of NW diameter, while Ga distribution seems to remain unaltered. Photoluminescence and Raman scattering measurements carried out on ensembles of NWs exhibi…

research product

Reversed polarized emission in highly strained a-plane GaN/AlN multiple quantum wells

The polarization of the emission from a set of highly strained $a$-plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite $c$ axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the $c$ axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been p…

research product

Physics demos for all UVEG degrees: a unique project in Spain

Abstract The Physics Demo Project at the University of Valencia ( www.uv.es/fisicademos ) has developed a collection of physics demonstrations to be used during lectures. It consists of more than 130 experimental demos about different physics topics. More than 30 professors borrow them whenever they lecture on physics in any of our 40 courses in 17 different science or technical degrees, involving 246 ECTS and more than 3500 students. Each demo kit with a simple experimental set displays a particular physics phenomenon. An on-line user guide highlights the main physics principles involved, instructions on how to use it and advices of how to link it to the theoretical concepts or to technica…

research product

Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques

The growth selectivity and structural quality of GaN nanowires obtained by plasma-assisted molecular beam epitaxy on pre-patterned GaN(0001) templates are investigated by means of non-destructive techniques. Optimum control over the nanowire arrangement and size requires a pitch between the mask apertures below twice the diffusion length of Ga atoms. Lower pitches, however, seem to slightly diminish the structural quality of the material, as revealed by the increase of the Raman peak linewidths. The photoluminescence spectra of the nanowires show a considerable presence of basal plane stacking faults, whose density increases for decreasing nanowire diameter. The capabilities of Kelvin probe…

research product

Elemental distribution and structural characterization of GaN/InGaN core-shell single nanowires by Hard X-ray synchrotron nanoprobes

Improvements in the spatial resolution of synchrotron-based X-ray probes have reached the nano-scale and they, nowadays, constitute a powerful platform for the study of semiconductor nanostructures and nanodevices that provides high sensitivity without destroying the material. Three complementary hard X-ray synchrotron techniques at the nanoscale have been applied to the study of individual nanowires (NWs) containing non-polar GaN/InGaN multi-quantum-wells. The trace elemental sensitivity of X-ray fluorescence allows one to determine the In concentration of the quantum wells and their inhomogeneities along the NW. It is also possible to rule out any contamination from the gold nanoparticle …

research product

Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors

Raman spectra of aluminum nitride (AlN) under pressure have been measured up to $25\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, i.e., beyond the onset of the wurtzite-to-rocksalt phase transition around $20\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$. The experimental pressure coefficients for all the Raman-active modes of the wurtzite phase are reported and compared to those obtained from ab initio lattice dynamical calculations, as well as to previous experimental and theoretical results. The pressure coefficients of all the Raman-active modes in wurtzite-type semiconductors (AlN, GaN, InN, ZnO, and BeO), as well as the relatively low bulk modulus and phase transition pressure in wurtzite AlN, a…

research product

Dependence of the lattice parameters and the energy gap of zinc-blende-type semiconductors on isotopic masses.

The dependence of the ${\mathit{E}}_{0}$ direct gap of Ge, GaAs, and ZnSe on isotopic masses at low temperatures has been investigated. Contributions of the variation of the lattice parameter to the gap shift of the binary compounds have been evaluated by using a volume-dependent lattice dynamics, while local empirical pseudopotential techniques have been employed to calculate gap shifts due to electron-phonon interaction. The dependence of these terms on the lattice-dynamical model and on the q\ensuremath{\rightarrow}0 extrapolation of the pseudopotential form factors has been investigated. The contributions of the optical and acoustical modes to the isotopic shift are analyzed. The result…

research product

Raman study and theoretical calculations of strain in GaN quantum dot multilayers

Changes in strain and phonon mode energy in stacks of self-assembled GaN quantum dots embedded in AlN have been studied by means of Raman spectroscopy as a function of the number of periods. The ${E}_{2H}$ phonon modes related to the quantum dots and AlN spacers are clearly resolved, and their energies allow monitoring the state of strain of the dots and AlN spacers simultaneously. The evolution of the measured phonon frequencies and the associated strains are discussed in comparison with theoretical calculations of the inhomogeneous strain distribution in a system of coherent misfitting inclusions.

research product

Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

research product

Structural properties of GaN quantum dots

The strain state and the deformation profile of GaN quantum dots embedded in AlN have been measured by high resolution electron microscopy, medium energy ion scattering and grazing incidence X-ray diffraction. The results are compared with theoretical calculations, allowing one to conclude that GaN quantum dots experience a non biaxial strain which drastically decreases when going from the basal plane up to the apex of the dots. We also demonstrate that AlN is distorted in the surroundings of the dots, which provides the driving force for vertical correlation of GaN dots when the AlN spacer between successive planes is thin enough.

research product

Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy

International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…

research product

Dopant radial inhomogeneity in Mg-doped GaN nanowires

International audience; Using atom probe tomography, it is demonstrated that Mg doping of GaN nanowires grown by Molecular Beam Epitaxy results in a marked radial inhomogeneity, namely a higher Mg content in the periphery of the nanowires. This spatial inhomogeneity is attributed to a preferential incorporation of Mg through the m-plane sidewalls of nanowires and is related to the formation of a Mg-rich surface which is stabilized by hydrogen. This is further supported by Raman spectroscopy experiments which give evidence of Mg-H complexes in the doped nanowires. A Mg doping mechanism such as this, specific to nanowires, may lead to higher levels of Mg doping than in layers, boosting the po…

research product

Mg and In Codoped p-type AlN Nanowires for pn Junction Realization.

Efficient, mercury-free deep ultraviolet (DUV) light-emitting diodes (LEDs) are becoming a crucial challenge for many applications such as water purification. For decades, the poor p-type doping and difficult current injection of Al-rich AlGaN-based DUV LEDs have limited their efficiency and therefore their use. We present here the significant increase in AlN p-doping thanks to Mg/In codoping, which leads to an order of magnitude higher Mg solubility limit in AlN nanowires (NWs). Optimal electrical activation of acceptor impurities has been further achieved by electron irradiation, resulting in tunnel conduction through the AlN NW p-n junction. The proposed theoretical scenario to account f…

research product

Growth of zinc-blende GaN on muscovite mica by molecular beam epitaxy

Abstract The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11–20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and z…

research product

Spontaneous intercalation of Ga and In bilayers during plasma-assisted molecular beam epitaxy growth of GaN on graphene on SiC

The formation of a self-limited metallic bilayer is reported during the growth of GaN by plasma-assisted molecular beam epitaxy on graphene on (0001) SiC. Depending on growth conditions, this layer may consist of either Ga or In, which gets intercalated between graphene and the SiC surface. Diffusion of metal atoms is eased by steps at SiC surface and N plasma induced defects in the graphene layer. Energetically favorable wetting of the (0001) SiC surface by Ga or In is tentatively assigned to the breaking of covalent bonds between (0001) SiC surface and carbon buffer layer. As a consequence, graphene doping and local strain/doping fluctuations decrease. Furthermore, the presence of a metal…

research product

Raman study of strain in GaN/AlN quantum dot multilayered structures

Raman spectroscopy has been used to investigate self-assembled stacks of GaN/AlN quantum dots with increasing number of periods. The E2H phonon modes associated to GaN and AlN are clearly resolved with visible excitation, and their energies allow the simultaneous monitoring of the dot and barrier strain states. The compression of the quantum dots is evidenced by a shift of the E2H phonon mode of circa 29 cm–1 to higher energies with respect to its relaxed value. The strain of the AlN spacer is found to be correlated to that of the dot, with an increase in its tensile component for the samples with fewer periods and a partial relaxation for samples over 50 periods. Additionally, resonant eff…

research product

Innocampus Explora: Una aproximación multidisciplinar a la problemática ambiental

[ES] Presentamos las actividades del proyecto de innovación Innocampus Explora desarrollado en el campus de Burjassot-Paterna de la Universitat de València y cuyo objetivo principal es mostrar la interrelación existente entre los diferentes grados científicos y técnicos del campus. En la presente anualidad, el equipo de trabajo integrado por estudiantes y profesores de todos las facultades y escuelas del campus de Burjassot-Paterna, ha desarrollado actividades en torno a la problemática medioambiental. Una visión transversal e interdisciplinar de los problemas de los usos del plástico y de la energía nuclear que enlaza con varios de los Objetivos de Desarrollo Sostenible (ODS) dictados por …

research product

Raman scattering as a tool for the evaluation of strain inGaN∕AlNquantum dots: The effect of capping

The strain state of $\mathrm{Ga}\mathrm{N}∕\mathrm{Al}\mathrm{N}$ quantum dots grown on $6H\text{\ensuremath{-}}\mathrm{Si}\mathrm{C}$ has been investigated as a function of AlN capping thickness by three different techniques. On the one hand, resonant Raman scattering allowed the detection of the ${A}_{1}(\mathrm{LO})$ quasiconfined mode. It was found that its frequency increases with AlN deposition, while its linewidth did not evolve significantly. Available experiments of multiwavelength anomalous diffraction and diffraction anomalous fine structure on the same samples provided the determination of the wurtzite lattice parameters $a$ and $c$ of the quantum dots. A very good agreement is …

research product

Impact of kinetics on the growth of GaN on graphene by plasma-assisted molecular beam epitaxy.

International audience; The growth of GaN on graphene by molecular beam epitaxy was investigated. The most stable epitaxial relationship, i.e. [00.1]-oriented grains, is obtained at high temperature and N-rich conditions, which match those for nanowire growth. Alternatively, at moderate temperature and Ga-rich conditions, several metastable orientations are observed at the nucleation stage, which evolve preferentially towards [00.1]-oriented grains. The dependence of the nucleation regime on growth conditions was assigned to Ga adatom kinetics. This statement is consistent with the calculated graphene/GaN in-plane lattice coincidence and supported by a combination of transmission electron m…

research product

The role of surface diffusion in the growth mechanism of III-nitride nanowires and nanotubes.

Abstract The spontaneous growth of GaN nanowires (NWs) in absence of catalyst is controlled by the Ga flux impinging both directly on the top and on the side walls and diffusing to the top. The presence of diffusion barriers on the top surface and at the frontier between the top and the sidewalls, however, causes an inhomogeneous distribution of Ga adatoms at the NW top surface resulting in a GaN accumulation in its periphery. The increased nucleation rate in the periphery promotes the spontaneous formation of superlattices in InGaN and AlGaN NWs. In the case of AlN NWs, the presence of Mg can enhance the otherwise short Al diffusion length along the sidewalls inducing the formation of AlN …

research product

Preservation of quantum coherence after exciton-exciton interaction in quantum wells

The dynamics of exciton-exciton interaction in quantum wells has been investigated by monitoring the time-resolved resonant secondary emission that follows excitation with linearly and circularly polarized light. Preservation of quantum beating in the cross-polarized emission demonstrates that spin relaxation can take place, for some scattering channels, without total quantum coherence loss. Interexciton electron exchange is the scattering mechanism that explains the persistence of the beating and, since it is sensitive to the fine structure of excitons, the shift by pi in the phase of the beating observed in the experiment.

research product

Study of the recombination around the excitonic region of MBE ZnSe:Cl thin films

The recombination processes around the excitonic region of undoped ZnSe and chlorine doped ZnSe thin films were studied by continuous-wave photoluminescence (cw-PL) and time-resolved photoluminescence (TRPL) spectroscopies. Samples with different chlorine concentration were obtained by varying the temperature of the Cl source. The evolution of the PL signal and its decay time were analyzed as a function of temperature. Activation energy (Ea) values associated to the quenching of the D0X and band-to-band emission were obtained from the temperature dependent cw-PL experiments. The activation energy was lower for the film with higher Cl content. The characteristic exponential decay time (TPL) …

research product

Resonant Rayleigh scattering by confined two-dimensional excitonic states

A systematic study of resonant Rayleigh scattering in semiconductor single quantum wells has been carried out. The dependence of the scattering efficiency on the well width and the temperature has been investigated. The behaviour observed in the resonant Rayleigh spectra can be explained in terms of the confinement of the excitonic states in the plane of the well due to fluctuations in the well width. A microscopic theoretical model for the elastic scattering of light by weakly confined two-dimensional excitonic states has been developed. The Rayleigh scattering efficiency has been calculated to the lowest-order of perturbation theory and the results found to be in good agreement with the e…

research product

Pressure and temperature dependence of the lattice dynamics ofCuAlO2investigated by Raman scattering experiments andab initiocalculations

We have studied the vibrational properties of $\mathrm{Cu}\mathrm{Al}{\mathrm{O}}_{2}$ by means of Raman scattering in ambient conditions, at low temperature, and also at high pressure. Results are discussed in the framework of an ab initio calculation. Raman active modes have wave numbers ${\ensuremath{\sigma}}_{{E}_{g}}=418.1\ifmmode\pm\else\textpm\fi{}0.2\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$ and ${\ensuremath{\sigma}}_{{A}_{1g}}=767.2\ifmmode\pm\else\textpm\fi{}0.3\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$. Polarized measurements with single crystals have confirmed their symmetry. We present and discuss the phonon-dispersion curves. Below $200\phant…

research product

Characterization of single semiconductor nanowires by synchrotron radiation nanoprobe

In this work, we report on the results of the characterization of single semiconductor nanowires by x-ray fluorescence nanoprobe. Wurtzite InGaN and Co-implanted ZnO single nanowires were studied. Ternary semiconductor nanowires show an axial inhomogeneous elemental distribution, with Ga accumulating at the bottom and In at the top of the wires. The ZnO NWs, on the other hand, show a homogeneous distribution of the Co implanted along the nanowires, without signatures of clustering or segregation effects induced by the implantation. No signatures of unintentional doping are observed neither in the InGaN nor the ZnO NWs. These overall results demonstrate the suitability of X-ray fluorescence …

research product

Raman scattering inβ-ZnS

The first- and second-order Raman spectra of cubic ZnS $(\ensuremath{\beta}$-ZnS, zinc-blende) are revisited. We consider spectra measured with two laser lines for samples with different isotopic compositions, aiming at a definitive assignment of the observed Raman features and the mechanisms which determine the linewidth of the first order TO and LO Raman phonons. For this purpose, the dependence of the observed spectra on temperature and pressure is investigated. The linewidth of the TO phonons is found to vary strongly with pressure and isotopic masses. Pressure runs, up to 15 GPa, were performed at 16 K and 300 K. Whereas well-defined TO Raman phonons were observed at low temperature in…

research product

The controlled growth of GaN microrods on Si(111) substrates by MOCVD

Abstract In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiN x /Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 ¯ 1 } planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm −1 ) with crystal quality comparable to bu…

research product

Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy

In this work, we demonstrate the capabilities of atomic force microscopies (AFMs) for the nondestructive determination of the polarity of GaN nanowires (NWs). Three complementary AFMs are analyzed here: Kelvin probe force microscopy (KPFM), light-assisted KPFM, and piezo-force microscopy (PFM). These techniques allow us to assess the polarity of individual NWs over an area of tens of μm(2) and provide statistics on the polarity of the ensemble with an accuracy hardly reachable by other methods. The precise quantitative analysis of the tip-sample interaction by multidimensional spectroscopic measurements, combined with advanced data analysis, has allowed the separate characterization of elec…

research product

Anisotropic polarization of non‐polar GaN quantum dot emission

We report on experimental and theoretical studies of the polarization selection rules of the emission of non-polar GaN/AlN self-assembled quantum dots. Time-integrated and time-resolved photoluminescence measurements have been performed to determine the degree of polarization. It is found that the emission of some samples can be predominantly polarized parallel to the wurtzite c axis, in striking difference with the previously reported results for bulk GaN and its heterostructures, in which the emission was preferentially polarized perpendicular to the c axis. Theoretical calculations based on an 8-band k·p model are used to analyze the relative importance of strain, confinement and quantum…

research product

X-ray absorption near-edge structure of GaN with high Mn concentration grown on SiC.

By means of x-ray absorption near-edge structure (XANES) several Ga(1-x)Mn(x)N (0.03x0.09) layers have been analyzed. The Mn-doped GaN samples consisted of different epilayers grown by molecular beam epitaxy on [0001] SiC substrates. The low mismatch between GaN and SiC allows for a good quality and homogeneity of the material. The measurements were performed in fluorescence mode around both the Ga and Mn K edges. All samples studied present a similar Mn ionization state, very close to 2+, and tetrahedral coordination. In order to interpret the near-edge structure, we have performed ab initio calculations using the full potential linear augmented plane wave method as implemented in the Wien…

research product

Supramolecular capping-ligand effect of lamellar silica mesostructures for the one-pot synthesis of highly dispersed ZnO nanoparticles

ZnO?SiO2 lamellar nanocomposites with high zinc content (5?Si/Zn?50) have been synthesized through a one-pot surfactant-assisted procedure from aqueous solution and starting from molecular atrane complexes of Zn and Si as inorganic hydrolytic precursors. This approach allows optimization of the dispersion of the ZnO nanodomains in the silica sheets. The nature of the layered silica materials has been confirmed by x-ray diffraction. Spectroscopic (ultraviolet?visible and photoluminescence) study of these layered silica materials shows that, regardless of the Si/Zn ratio, Zn atoms are organized in well-dispersed, uniform ZnO nanodomains (about 1.2?nm) partially embedded within the silica shee…

research product

Optical and Vibrational Properties of Self-assembled GaN Quantum Dots

Publisher Summary This chapter describes quantum dots (QDs) based on group III nitrides (III-N). They are expected to be the active medium of new optoelectronic devices operating at high powers and high temperatures. Besides the well-known advantages of their bulk and quantum well (QW) counterparts, III-N QDs provide strong confinement of carriers in nearly perfect zero-dimensional boxes. Quantum effects provide new degrees of freedom for the design of advanced devices. The chapter reviews the systems of dots that appear spontaneously during epitaxial growth without the need of artificial post-processing and designate them as self-assembled or self-organized QDs regardless of the mechanism …

research product

Non-resonant Raman spectroscopy of individual ZnO nanowires via Au nanorod surface plasmons

We present a non-resonant Raman spectroscopy study of individual ZnO nanowires mediated by Au nanorod surface plasmons. In this approach, selective excitation of the plasmonic oscillations with radiation energy below the semiconductor bandgap was used to probe surface optical modes of individual ZnO nanowires without simultaneous excitation of bulk phonons modes or band-edge photoluminescence. The development of a reproducible method for decoration of nanowires with colloidal Au nanorods allowed performing an extensive statistical analysis addressing the variability and reproducibility of the Raman features found in the hybrid nanostructures. An estimated field enhancement factor of 103 was…

research product

Mesosynthesis of ZnO-SiO(2) porous nanocomposites with low-defect ZnO nanometric domains.

Silica-based ZnO-MCM-41 mesoporous nanocomposites with high Zn content (5≤Si/Zn≤50) have been synthesized by a one-pot surfactant-assisted procedure from aqueous solution using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes as inorganic hydrolytic precursors. This preparative technique allows optimization of the dispersion of the ZnO nanodomains in the silica walls. The mesoporous nature of the final materials is confirmed by x-ray diffraction (XRD), transmission electron microscopy (TEM) and N(2) adsorption-desorption isotherms. The ZnO-MCM-41 materials show unimodal pore size distributions without …

research product

InN thin film lattice dynamics by grazing incidence inelastic x-ray scattering.

Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.

research product

X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga 1-x Mn x N (0.06 <x<0.14) thin epilayers grown by molecular beam epitaxy on [0001] SiC substrates. The measurements were performed in fluorescence mode around the Ga and Mn K-edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after …

research product

A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption

Dual-function hybrid material U1 was designed for simultaneous chromofluorogenic detection and removal of Hg(2+) in an aqueous environment. Mesoporous material UVM-7 (MCM41 type) with homogeneously distributed pores of about 2-3 nm in size, a large specific surface area exceeding 1000 m(2) g(-1), and nanoscale particles was used as an inorganic support. The mesoporous solid is decorated with thiol groups that were treated with squaraine dye III to give a 2,4-bis(4-dialkylaminophenyl)-3-hydroxy-4-alkylsulfanylcyclobut-2-enone (APC) derivative that is covalently anchored to the inorganic silica matrix. The solid was characterised by various techniques including X-ray diffraction, transmission…

research product