6533b830fe1ef96bd1296581
RESEARCH PRODUCT
Dopant radial inhomogeneity in Mg-doped GaN nanowires
Alexandra-madalina SiladieBruno DaudinPierre-henri JouneauNúria GarroBastien BonefIsabelle MoutonCatherine BougerolAna CrosNicolas MollardL. AmichiEric RobinAdeline Greniersubject
Materials scienceHydrogenNanowirechemistry.chemical_elementBioengineering02 engineering and technologyAtom probe01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciencesGeneral Materials ScienceElectrical and Electronic Engineeringgallium nitride nanowires010302 applied physics[PHYS]Physics [physics]Dopantbusiness.industryMechanical EngineeringDopingGeneral Chemistryspatialinhomogeneity of dopants021001 nanoscience & nanotechnologymagnesium incorporationchemistryatom probe tomographyMechanics of MaterialsRaman spectroscopysymbolsOptoelectronics0210 nano-technologyRaman spectroscopybusinessMolecular beam epitaxyLight-emitting diodedescription
International audience; Using atom probe tomography, it is demonstrated that Mg doping of GaN nanowires grown by Molecular Beam Epitaxy results in a marked radial inhomogeneity, namely a higher Mg content in the periphery of the nanowires. This spatial inhomogeneity is attributed to a preferential incorporation of Mg through the m-plane sidewalls of nanowires and is related to the formation of a Mg-rich surface which is stabilized by hydrogen. This is further supported by Raman spectroscopy experiments which give evidence of Mg-H complexes in the doped nanowires. A Mg doping mechanism such as this, specific to nanowires, may lead to higher levels of Mg doping than in layers, boosting the potential interest of nanowires for light emitting diode applications.
year | journal | country | edition | language |
---|---|---|---|---|
2018-06-22 |