0000000000746682

AUTHOR

Bruno Gayral

0000-0002-3724-1380

showing 5 related works from this author

Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy

2019

International audience; It is demonstrated that the N-polarity of GaN nanowires (NWs) spontaneously nucleated on Si (111) by molecular beam epitaxy can be reversed by intercalation of an Al-or Ga-oxynitride thin layer. The polarity change has been assessed by a combination of chemical etching, Kelvin probe force microscopy, cathodo-and photoluminescence spectroscopy and transmission electron microscopy experiments. Cathodoluminescence of the Ga-polar NW section exhibits a higher intensity in the band edge region, consistent with a reduced incorporation of chemical impurities. The polarity reversal method we propose opens the path to the integration of optimized metal-polar NW devices on any…

010302 applied physicsKelvin probe force microscopePolarity reversalMaterials sciencePhysics and Astronomy (miscellaneous)Polarity (physics)business.industryNanowireCathodoluminescence02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIsotropic etching[SPI.MAT]Engineering Sciences [physics]/MaterialsNanolithography0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologybusinessMolecular beam epitaxy
researchProduct

Growth of zinc-blende GaN on muscovite mica by molecular beam epitaxy

2021

Abstract The mechanisms of plasma-assisted molecular beam epitaxial growth of GaN on muscovite mica were investigated. Using a battery of techniques, including scanning and transmission electron microscopy, atomic force microscopy, cathodoluminescence, Raman spectroscopy and x-ray diffraction, it was possible to establish that, in spite of the lattice symmetry mismatch, GaN grows in epitaxial relationship with mica, with the [11–20] GaN direction parallel to [010] direction of mica. GaN layers could be easily detached from the substrate via the delamination of the upper layers of the mica itself, discarding the hypothesis of a van der Waals growth mode. Mixture of wurtzite (hexagonal) and z…

[PHYS]Physics [physics]Materials scienceMechanical EngineeringMuscoviteNucleationBioengineeringCathodoluminescence02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciences0104 chemical sciencesCrystallographyMechanics of MaterialsTransmission electron microscopyengineeringGeneral Materials ScienceMicaElectrical and Electronic Engineering0210 nano-technologyWurtzite crystal structureMolecular beam epitaxy
researchProduct

Growth, structural and optical properties of GaN/AlN and GaN/GaInN nanowire heterostructures

2012

Abstract After discussing the GaN NW nucleation issue, we will present the structural properties of axial and radial (i.e. core/shell) GaN/AlN NW heterostructures and adress the issue of critical thickness during the growth of such heterostructures. Next, we will present the growth of InGaN NWs on a GaN NW base. It will be shown that the morphology and structural properties of the InGaN NW sections depend on the In content: for high In content a flat top is observed and plastic relaxation is occuring, with mismatch dislocations formed at the InGaN/GaN interface. By contrast, for In content below 25% InGaN NWs exhibit a pencil-like shape assigned to a purely elastic strain relaxation process…

Materials sciencePhotoluminescencebusiness.industryRelaxation (NMR)NucleationNanowireShell (structure)HeterojunctionPhysics and Astronomy(all)Xrays diffractionsymbols.namesakenanowiresmolecular beam epitaxyRaman spectroscopysymbolsIII nitride wide gap semiconductorsOptoelectronicsphotoluminescencebusinessRaman spectroscopyhigh resolution electron microscopyMolecular beam epitaxyPhysics Procedia
researchProduct

Impact of kinetics on the growth of GaN on graphene by plasma-assisted molecular beam epitaxy.

2019

International audience; The growth of GaN on graphene by molecular beam epitaxy was investigated. The most stable epitaxial relationship, i.e. [00.1]-oriented grains, is obtained at high temperature and N-rich conditions, which match those for nanowire growth. Alternatively, at moderate temperature and Ga-rich conditions, several metastable orientations are observed at the nucleation stage, which evolve preferentially towards [00.1]-oriented grains. The dependence of the nucleation regime on growth conditions was assigned to Ga adatom kinetics. This statement is consistent with the calculated graphene/GaN in-plane lattice coincidence and supported by a combination of transmission electron m…

PhotoluminescenceMaterials scienceNucleationNanowireBioengineering02 engineering and technology010402 general chemistryEpitaxy01 natural scienceslaw.inventionGaNsymbols.namesakelawGeneral Materials ScienceElectrical and Electronic EngineeringGrapheneMechanical EngineeringVan der Waals epitaxyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMechanics of MaterialsChemical physicsTransmission electron microscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyMolecular beam epitaxyNanotechnology
researchProduct

Growth, structural and optical properties of AlGaN nanowires in the whole composition range.

2013

International audience; We report on the growth of AlxGa1-xN nanowires by plasma-assisted molecular beam epitaxy for x in the 0.3-0.8 range. Based on a combination of macro- and micro-photoluminescence, Raman spectroscopy, x-ray diffraction and scanning electron microscopy experiments, it is shown that the structural and optical properties of AlGaN NWs are governed by the presence of compositional fluctuations associated with strongly localized electronic states. A growth model is proposed, which suggests that, depending on growth temperature and metal adatom density, macroscopic composition fluctuations are mostly of kinetic origin and are directly related to the nucleation of the AlGaN na…

Materials scienceScanning electron microscopeNanowireNucleationBioengineering02 engineering and technologySubstrate (electronics)Epitaxy01 natural sciencessymbols.namesake0103 physical sciencesMicroscopyGeneral Materials ScienceElectrical and Electronic Engineering010302 applied physicsMechanical EngineeringGeneral Chemistry021001 nanoscience & nanotechnologyCrystallographyMechanics of MaterialsChemical physicssymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyRaman spectroscopyMolecular beam epitaxyNanotechnology
researchProduct