0000000000792540

AUTHOR

R. López-estopier

showing 6 related works from this author

Q-switched mode locking noise-like pulse generation from a thulium-doped all-fiber laser based on nonlinear polarization rotation

2021

Abstract Q-switched mode locking (QML) noise-like pulse (NLP) emission from an all-fiber thulium-doped laser based on the nonlinear polarization rotation effect is reported. The QML emission is obtained in a cavity with net anomalous dispersion in a pump power interval in between the CW laser threshold and the threshold of the NLP regime. Highest-energy QML pulses were observed with a repetition rate of 812 kHz with a pump power of 520 mW at the optical wavelength of 1881.09 nm. A maximum overall energy of 460 nJ at an average output power of 6.4 mW was reached, which corresponds to a burst of mode-locked noise-like sub-pulses with 8.7 ns of pulse duration within a QML envelope of 11 µs. Th…

Nonlinear polarization rotationPhysicsQ-switched mode lockingbusiness.industryPhysics::Opticschemistry.chemical_elementPulse durationThulium-doped fiber lasersQC350-467Optics. LightÒpticaLaserNoise (electronics)Atomic and Molecular Physics and OpticsPulse (physics)law.inventionThuliumOpticschemistryMode-lockinglawFiber laserbusinessEnvelope (waves)Results in Optics
researchProduct

Q switching and mode locking pulse generation from an all-fiber ring laser by intermodal acousto-optic bandpass modulation

2018

Q-switched and mode-locked (QML) pulse generation from an all-fiber ring laser based on intermodal acousto-optic bandpass modulation is reported. The modulator relies on full-acousto-optic mode re-coupling cycle induced by a standing flexural acoustic wave, with a transmission response that is controlled by amplitude modulation of the acoustic wave signal. The Q factor of the cavity is controlled by a rectangular pulse wave with variable frequency and duty cycle, whereas mode locking is achieved by amplitude modulation derived from a standing flexural acoustic wave. The best QML pulses were obtained at 0.5 kHz repetition rate, with a pump power of 549.2 mW, at the optical wavelength of 1568…

Optical fiberMaterials scienceRing laser02 engineering and technologyFiber optics01 natural sciencesIndustrial and Manufacturing Engineeringlaw.invention010309 opticsFiber lasers020210 optoelectronics & photonicsOpticsBand-pass filterlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringInstrumentationAcousto-optic modulationbusiness.industryCondensed Matter PhysicsQ-switchingAtomic and Molecular Physics and OpticsUNESCO::FÍSICA::Óptica ::Fibras ópticasPulse (physics)Q-switched and mode-lockedAll fiberMode-lockingModulation:FÍSICA::Óptica ::Fibras ópticas [UNESCO]business
researchProduct

Experimental study of MMI structures in a switchable continuous-wave thulium-doped all-fiber laser

2022

Switchable multi-wavelength laser emission from a thulium-doped all-fiber laser is reported by implementing a tapered and a non-tapered multi-modal interference (MMI) filters. The MMI structure relies on a coreless optical fiber spliced in between two single-mode optical fibers. For the non-tapered case, a minimum insertion loss of 12.60 dB is achieved around the 2-μm region, from which stable generation of commutable dual-wavelength emission at 1986.34 nm and 2017.38 nm is obtained. On the other hand, the tapered MMI structure performs a minimum insertion loss of 8.74 dB at the 2-μm region, allowing a stable triple-wavelength emission at 1995.4 nm, 2013.3 nm, and 2038.3 nm. In addition, co…

ÒpticaElectrical and Electronic EngineeringAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsOptics & Laser Technology
researchProduct

On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

2012

Silicon Rich Oxide (SRO) has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD). In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°Care presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectr…

PhotoluminescenceMaterials scienceArticle SubjectSiliconbusiness.industryOxidechemistry.chemical_elementChemical vapor depositionCathodelaw.inventionchemistry.chemical_compoundSemiconductorchemistrylawlcsh:Technology (General)lcsh:T1-995OptoelectronicsGeneral Materials ScienceLight emissionEmission spectrumbusinessJournal of Nanomaterials
researchProduct

Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

2017

The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results de…

Materials sciencePhysics and Astronomy (miscellaneous)business.industryAmplifierBandwidth (signal processing)02 engineering and technology01 natural sciencesNonlinear optical fiberUNESCO::FÍSICA::Óptica ::Fibras ópticasSupercontinuum010309 optics020210 optoelectronics & photonics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessInstrumentationErbium doped fiber laserssupercontinuum generationnonlinear effects
researchProduct

Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator2017

2017

Active Q-switching of an all-fiber ring laser utilizing a novel in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. The transmission characteristics of the AOTBF are controlled by amplitude modulation of the acoustic wave; the device exhibits a 3-dB power insertion loss, 0.91-nm optical bandwidth, and 28-dB nonresonant light suppression. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by traveling flexural acoustic waves. When the acoustical signal is switched on, cavity losses are reduced, and then, laser emission is generated. In addition, by varying the acoustic wave frequency, a wide wavelength tuning range of 30.7 nm is achieved f…

Acousto-optic modulationAcousto-optic filters:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber opticsBandpass filtersUNESCO::FÍSICA::Óptica ::Fibras ópticasFiber Lasers
researchProduct